QoM1610: Will NVMe over Fabric GA in enterprise AFA by Oct’2017

NVMeNVMe over fabric (NVMeoF) was a hot topic at Flash Memory Summit last August. Facebook and others were showing off their JBOF (see my Facebook moving to JBOF post) but there were plenty of other NVMeoF offerings at the show.

NVMeoF hardware availability

When Brocade announced their Gen6 Switches they made a point of saying that both their Gen5 and Gen6 switches currently support NVMeoF protocols. In addition to Brocade’s support, in Dec 2015 Qlogic announced support for NVMeoF for select HBAs. Also, as of  July 2016, Emulex announced support for NVMeoF in their HBAs.

From an Ethernet perspective, Qlogic has a NVMe Direct NIC which supports NVMe protocol offload for iSCSI. But even without NVMe Direct, Ethernet 40GbE & 100GbE with  iWARP, RoCEv1-v2, iSCSI SER, or iSCSI RDMA all could readily support NVMeoF on Ethernet. The nice thing about NVMeoF for Ethernet is not only do you get support for iSCSI & FCoE, but CIFS/SMB and NFS as well.

InfiniBand and Omni-Path Architecture already support native RDMA, so they should already support NVMeoF.

So hardware/firmware is already available for any enterprise AFA customer to want NVMeoF for their data center storage.

NVMeoF Software

Intel claims that ~90% of the software driver functionality of NVMe is the same for NVMeoF. The primary differences between the two seem to be the NVMeoY discovery and queueing mechanisms.

There are two fabric methods that can be used to implement NVMeoF data and command transfers: capsule mode where NVMe commands and data are encapsulated in normal fabric packets or fabric dependent mode where drivers make use of native fabric memory transfer mechanisms (RDMA, …) to transfer commands and data.

12679485_245179519150700_14553389_nA (Linux) host driver for NVMeoF is currently available from Seagate. And as a result, support for NVMeoF for Linux is currently under development, and  not far from release in the next Kernel (I think). (Mellanox has a tutorial on how to compile a Linux kernel with NVMeoF driver support).

With Linux coming out, Microsoft Windows and VMware can’t be far behind. However, I could find nothing online, aside from base NVMe support, for either platform.

NVMeoF target support is another matter but with NICs/HBAs & switch hardware/firmware and drivers presently available, proprietary storage system target drivers are just a matter of time.

Boot support is a major concern. I could find no information on BIOS support for booting off of a NVMeoF AFA. Arguably, one may not need boot support for NVMeoF AFAs as they are probably not a viable target for storing App code or OS software.

From what I could tell, normal fabric multi-pathing support should work fine with NVMeoF. This should allow for HA NVMeoF storage, a critical requirement for enterprise AFA storage systems these days.

NVMeoF advantages/disadvantages

Chelsio and others have shown that NVMeoF adds ~8μsec of additional overhead beyond native NVMe SSDs, which if true would warrant implementation on all NVMe AFAs. This may or may not impact max IOPS depending on scale-ability of NVMeoF.

For instance, servers (PCIe bus hardware) typically limit the number of private NVMe SSDs to 255 or less. With an NVMeoF, one could potentially have 1000s of shared NVMe SSDs accessible to a single server. With this scale, one could have a single server attached to a scale-out NVMeoF AFA (cluster) that could supply ~4X the IOPS that a single server could perform using private NVMe storage.

Base level NVMe SSD support and protocol stacks are starting to be available for most flash vendors and operating systems such as, Linux, FreeBSD, VMware, Windows, and Solaris. If Intel’s claim of 90% common software between NVMe and NVMeoF drivers is true, then it should be a relatively easy development project to provide host NVMeoF drivers.

The need for special Ethernet hardware that supports RDMA may delay some storage vendors from implementing NVMeoF AFAs quickly. The lack of BIOS boot support may be a minor irritant in comparison.

NVMeoF forecast

AFA storage systems, as far as I can tell, are all about selling high IOPS and very-low latency IOs. It would seem that NVMeoF would offer early adopter AFA storage vendors a significant performance advantage over slower paced competition.

In previous QoM/QoW posts we have established that there are about 13 new enterprise storage systems that come out each year. Probably 80% of these will be AFA, given the current market environment.

Of the 10.4 AFA systems coming out over the next year, ~20% of these systems pride themselves on being the lowest latency solutions in the market, and thus command high margins. One would think these systems would be the first to adopt NVMeoF. But, most of these systems have their own, proprietary flash modules and do not use standard (NVMe) SSDs and can use their own proprietary interface to their proprietary flash storage. This will delay any implementation for them until they can convert their flash storage to NVMe which may take some time.

On the other hand, most (70%) of the other AFA systems, that currently use SAS/SATA SSDs, could boost their IOP counts and drastically reduce their IO  response times, by implementing NVMe SSDs and NVMeoF. But converting SAS/SATA backends to NVMe will take time and effort.

But, there are a select few (~10%) of AFA systems, that already use NVMe SSDs in their AFAs, and for these few, they would seem to have a fast track towards implementing NVMeoF. The fact that NVMeoF is supported over all fabrics and all storage interface protocols make it even easier.

Moreover, NVMeoF has been under discussion since the summer of 2015, which tells me that astute AFA vendors have already had 18+ months to develop it. With NVMeoF host drivers & hardware available since Dec. 2015, means hardware and software exist to test and validate against.

I believe that NVMeoF will be GA’d within the next 12 months by at least one enterprise AFA system. So my QoM1610 forecast for NVMeoF is YES, with a 0.83 probability.





Hitachi and the coming IoT gold rush

img_7137Earlier this week I attended Hitachi Summit 2016 along with a number of other analysts and Hitachi executives where Hitachi discussed their current and ongoing focus on the IoT (Internet of Things) business.

We have discussed IoT before (see QoM1608: The coming IoT tsunami or not, Extremely low power transistors … new IoT applications). Analysts and companies predict  ~200B IoT devices by 2020 (my QoM prediction is 72.1B 0.7 probability). But in any case there’s a lot of IoT activity going to come online, very shortly. Hitachi is already active in IoT and if anything, wants it to grow, significantly.

Hitachi’s current IoT business

Hitachi is uniquely positioned to take on the IoT business over the coming decades, having a number of current businesses in industrial processes, transportation, energy production, water management, etc. Over time, all these industries and more are becoming much more data driven and smarter as IoT rolls out.

Some metrics indicating the scale of Hitachi’s current IoT business, include:

  • Hitachi is #79 in the Fortune Global 500;
  • Hitachi’s generated $5.4B (FY15) in IoT revenue;
  • Hitachi IoT R&D investment is $2.3B (over 3 years);
  • Hitachi has 15K customers Worldwide and 1400+ partners; and
  • Hitachi spends ~$3B in R&D annually and has 119K patents

img_7142Hitachi has been in the OT (Operational [industrial] Technology) business for over a century now. Hitachi has also had a very successful and ongoing IT business (Hitachi Data Systems) for decades now.  Their main competitors in this IoT business are GE and Siemans but neither have the extensive history in IT that Hitachi has had. But both are working hard to catchup.

Hitachi Rail-as-a-Service

img_7152For one example of what Hitachi is doing in IoT, they have recently won a 27.5 year Rail-as-a-Service contract to upgrade, ticket, maintain and manage all new trains for UK Rail.  This entails upgrading all train rolling stock, provide upgraded rail signaling, traffic management systems, depot and station equipment and ticketing services for all of UK Rail.

img_7153The success and profitability of this Hitachi service offering hinges on their ability to provide more cost efficient rail transport. A key capability they plan to deliver is predictive maintenance.

Today, in UK and most other major rail systems, train high availability is often supplied by using spare rolling stock, that’s pre-positioned and available to call into service, when needed. With Hitachi’s new predictive maintenance capabilities, the plan is to reduce, if not totally eliminate the need for spare rolling stock inventory and keep the new trains running 7X24.

img_7145Hitachi said their new trains capture 48K data items and generate over ~25GB/train/day. All this data, will be fed into their new Hitachi Insight Group Lumada platform which includes Pentaho, HSDP (Hitachi Streaming Data Platform) and their Content Analytics to analyze train data and determine how best to keep the trains running. Behind all this analytical power will no doubt be HDS HCP object store used to keep track of all the train sensor data and other information, Hitachi UCP servers to process it all, and other Hitachi software and hardware to glue it all together.

The new trains and services will be rolled out over time, but there’s a pretty impressive time table. For instance, Hitachi will add 120 new high speed trains to UK Rail by 2018.  About the only thing that Hitachi is not directly responsible for in this Rail-as-a-Service offering, is the communications network for the trains.

Hitachi other IoT offerings

Hitachi is actively seeking other customers for their Rail-as-a-service IoT service offering. But it doesn’t stop there, they would like to offer smart-water-as-a-service, smart-city-as-a-service, digital-energy-as-a-service, etc.

There’s almost nothing that Hitachi currently supplies as industrial products that they wouldn’t consider offering in an X-as-a-service solution. With HDS Lumada Analytics, HCP and HDS storage systems, Hitachi UCP converged infrastructure, Hitachi industrial products, and Hitachi consulting services, together they are primed to take over the IoT-industrial products/services market.

Welcome to the new Hitachi IoT world.


SPC-1 IOPS performance per GB-NAND – chart of the month

Bar chart depicting IOPS/GB-NAND, #1 is Datacore Parallel Server with ~266 IOPS/GB-NAND,
(c) 2016 Silverton Consulting, All Rights Reserved

The above is an updated chart from last months SCI newsletter StorInt™ SPC Performance Report depicting the top 10 SPC-1 submissions IOPS™ per GB-NAND. We have been searching for a while now how to depict storage system effectiveness when using SSD or other flash storage. We have used IOPS/SSD in the past but IOPS/GB-NAND looks better.

Calculating IOPS/GB-NAND

SPC-1 does not report this metric but it can be calculated by dividing IOPS by NAND storage capacity. One can find out NAND storage capacity by looking over SPC-1 full disclosure reports (FDR), totaling up the NAND storage in the configuration in all the SSDs and flash devices. This is total NAND capacity, not Total ASU (used storage) Capacity. GB-NAND reflects just what’s indicated for SSD/flash device capacity in the configuration section. This is not necessarily the device’s physical NAND capacity when over provisioned, but at least it’s available in the FDR.

DataCore Parallel Server IOPS/GB-NAND explained

The DataCore Parallel Server generated over 5M IOPS (IO’s/second) under an SPC-1 (OLTP-like) workload. And with their 54-480GB SSDs, totaling ~25.9TB of NAND capacity, it gives them just under 200 IOPS/GB-NAND. The chart in the original report was incorrect.  There we used 36-480GB SSDs or ~17.3TB of NAND to compute IOPS/GB-NAND, which gave them just under 300 IOPS/GB-NAND in the report, which was incorrect. (The full report has been since corrected and is available for re-download for subscribers to our newsletter).

The 480GB (Samsung SM863 MZ-7KM480E)SSDs were all SATA attached. Samsung lists these SSDs as V-NAND, MLC drives, rated at 97K random Reads and 26K random writes. At over 5M IOPS, it should be running close to 100% of the SSDs rated performance. However, DataCore’s Parallel Server included 2 controllers with a total of 3TB of DRAM cache,  which was then SAS connected to 4 DELL MD1220 storage arrays, each with 512GB of DRAM cache, so their total configuration had about 5TB of DRAM in it, most of which would have been used as a IO cache.

The SPC-1 submission only used 11.8TB (Total ASU capacity) of storage. All the DRAM cache help to explain how they attained 5M IOPS. Having a multi-tiered cache like DataCore-MD1220 configuration, doesn’t insure that all the cache is effectively used but even without cache tiering logic, there might not be much of an overlap between the MD1220 and Parallel Server caches. It would be more interesting to see how busy the SSDs were during this SPC-1 run.

How random the SPC-1 workload is, is subject to much speculation in the industry. Suffice it to say it’s not 100% random, but what is. Non-random OLTP workloads would tend to favor larger caches.

SPC is coming out with a new version of their benchmark with supplementary information which may shed more light on device busyness.

All SPC-1 benchmark submissions are available at storageperformance.org.

Want more?

The August 2016 and our other SPC Performance reports have much more information on SPC-1 and SPC-2 performance. Moreover, there’s a lot more performance information, covering email and other (OLTP and throughput intensive) block storage workloads, in our SAN Storage Buying Guide, available for purchase on our website. More information on file and block protocol/interface performance is included in SCI’s SAN-NAS Buying Guidealso available from our website .


The complete SPC performance report went out in SCI’s August 2016 Storage Intelligence e-newsletter.  A copy of the report will be posted on our SCI dispatches (posts) page over the next quarter or so (if all goes well).  However, you can get the latest storage performance analysis now and subscribe to future free SCI Storage Intelligence e-newsletters, by just using the signup form in the sidebar or you can subscribe here.


Blockchains at IBM

img_6985-2I attended IBM Edge 2016 (videos available here, login required) this past week and there was a lot of talk about their new blockchain service available on z Systems (LinuxONE).

IBM’s blockchain software/service  is based on the open source, Open Ledger, HyperLedger project.

Blockchains explained

1003163361_ba156d12f7We have discussed blockchain before (see my post on BlockStack). Blockchains can be used to implement an immutable ledger useful for smart contracts, electronic asset tracking, secured financial transactions, etc.

BlockStack was being used to implement Private Key Infrastructure and to implement a worldwide, distributed file system.

IBM’s Blockchain-as-a-service offering has a plugin based consensus that can use super majority rules (2/3+1 of members of a blockchain must agree to ledger contents) or can use consensus based on parties to a transaction (e.g. supplier and user of a component).

BitCoin (an early form of blockchain) consensus used data miners (performing hard cryptographic calculations) to determine the shared state of a ledger.

There can be any number of blockchains in existence at any one time. Microsoft Azure also offers Blockchain as a service.

The potential for blockchains are enormous and very disruptive to middlemen everywhere. Anywhere ledgers are used to keep track of assets, information, money, etc, that undergo transformations, transitions or transactions as they are further refined, produced and change hands, can be easily tracked in blockchains.  The only question is can these assets, information, currency, etc. be digitally fingerprinted and can that fingerprint be read/verified. If such is the case, then blockchains can be used to track them.

New uses for Blockchain

img_6995IBM showed a demo of their new supply chain management service based on z Systems blockchain in action.  IBM component suppliers record when they shipped component(s), shippers would record when they received the component(s), port authorities would record when components arrived at port, shippers would record when parts cleared customs and when they arrived at IBM facilities. Not sure if each of these transitions were recorded, but there were a number of records for each component shipment from supplier to IBM warehouse. This service is live and being used by IBM and its component suppliers right now.

Leanne Kemp, CEO Everledger, presented another example at IBM Edge (presumably built on z Systems Hyperledger service) used to track diamonds from mining, to cutter, to polishing, to wholesaler, to retailer, to purchaser, and beyond. Apparently the diamonds have a digital bar code/fingerprint/signature that’s imprinted microscopically on the diamond during processing and can be used to track diamonds throughout processing chain, all the way to end-user. This diamond blockchain is used for fraud detection, verification of ownership and digitally certify that the diamond was produced in accordance of the Kimberley Process.

Everledger can also be used to track any other asset that can be digitally fingerprinted as they flow from creation, to factory, to wholesaler, to retailer, to customer and after purchase.

Why z System blockchains

What makes z Systems a great way to implement blockchains is its securely, isolated partitioning and advanced cryptographic capabilities such as z System functionality accelerated hashing, signing & securing and hardware based encryption to speed up blockchain processing.  z Systems also has FIPS-140 level 4 certification which can provide the highest security possible for blockchain and other security based operations.

From IBM’s perspective blockchains speak to the advantages of the mainframe environments. Blockchains are compute intensive, they require sophisticated cryptographic services and represent formal systems of record, all traditional strengths of z Systems.

Aside from the service offering, IBM has made numerous contributions to the Hyperledger project. I assume one could just download the z Systems code and run it on any LinuxONE processing environment you want. Also, since Hyperledger is Linux based, it could just as easily run in any OpenPower server running an appropriate version of Linux.

Blockchains will be used to maintain the system of record of the future just like mainframes maintained the systems of record of today and the past.



Scality’s Open Source S3 Driver

The view from Scality’s conference room

We were at Scality last week for Cloud Field Day 1 (CFD1) and one of the items they discussed was their open source S3 driver. (Videos available here).

Scality was on the 25th floor of a downtown San Francisco office tower. And the view outside the conference room was great. Giorgio Regni, CTO, Scality, said on the two days a year it wasn’t foggy out, you could even see Golden Gate Bridge from their conference room.


img_6912As you may recall, Scality is an object storage solution that came out of the telecom, consumer networking industry to provide Google/Facebook like storage services to other customers.

Scality RING is a software defined object storage that supports a full complement of interface legacy and advanced protocols including, NFS, CIGS/SMB, Linux FUSE, RESTful native, SWIFT, CDMI and Amazon Web Services (AWS) S3. Scality also supports replication and erasure coding based on object size.

RING 6.0 brings AWS IAM style authentication to Scality object storage. Scality pricing is based on usable storage and you bring your own hardware.

Giorgio also gave a session on the RING’s durability (reliability) which showed they support 13-9’s data availability. He flashed up the math on this but it was too fast for me to take down:)

Scality has been on the market since 2010 and has been having a lot of success lately, having grown 150% in revenue this past year. In the media and entertainment space, Scality has won a lot of business with their S3 support. But their other interface protocols are also very popular.

Why S3?

It looks as if AWS S3 is becoming the defacto standard for object storage. AWS S3 is the largest current repository of objects. As such, other vendors and solution providers now offer support for S3 services whenever they need an object/bulk storage tier behind their appliances/applications/solutions.

This has driven every object storage vendor to also offer S3 “compatible” services to entice these users to move to their object storage solution. In essence, the object storage industry, like it or not, is standardizing on S3 because everyone is using it.

But how can you tell if a vendor’s S3 solution is any good. You could always try it out to see if it worked properly with your S3 application, but that involves a lot of heavy lifting.

However, there is another way. Take an S3 Driver and run your application against that. Assuming your vendor supports all the functionality used in the S3 Driver, it should all work with the real object storage solution.

Open source S3 driver

img_6916Scality open sourced their S3 driver just to make this process easier. Now, one could just download their S3server driver (available from Scality’s GitHub) and start it up.

Scality’s S3 driver runs ontop of a Docker Engine so to run it on your desktop you would need to install Docker Toolbox for older Mac or Windows systems or run Docker for Mac or Docker for Windows for newer systems. (We also talked with Docker at CFD1).

img_6933Firing up the S3server on my Mac

I used Docker for Mac but I assume the terminal CLI is the same for both.Downloading and installing Docker for Mac was pretty straightforward.  Starting it up took just a double click on the Docker application, which generates a toolbar Docker icon. You do need to enter your login password to run Docker for Mac but once that was done, you have Docker running on your Mac.

Open up a terminal window and you have the full Docker CLI at your disposal. You can download the latest S3 Server from Scality’s Docker hub by executing  a pull command (docker pull scality/s3server), to fire it up, you need to define a new container (docker run -d –name s3server -p 8000:8000 scality/s3server) and then start it (docker start s3server).

It’s that simple to have a S3server running on your Mac. The toolbox approach for older Mac’s and PC’S is a bit more complicated but seems simple enough.

The data is stored in the container and persists until you stop/delete the container. However, there’s an option to store the data elsewhere as well.

I tried to use CyberDuck to load some objects into my Mac’s S3server but couldn’t get it to connect properly. I wrote up a ticket to the S3server community. It seemed to be talking to the right port, but maybe I needed to do an S3cmd to initialize the bucket first – I think.

[Update 2016Sep19: Turns out the S3 server getting started doc said you should download an S3 profile for Cyberduck. I didn’t do that originally because I had already been using S3 with Cyberduck. But did that just now and it now works just like it’s supposed to. My mistake]


Anyways, it all seemed pretty straight forward to run S3server on my Mac. If I was an application developer, it would make a lot of sense to try S3 this way before I did anything on the real AWS S3. And some day, when I grew tired of paying AWS, I could always migrate to Scality RING S3 object storage – or at least that’s the idea.


NetApp updates their StorageGRID Webscale solution

grid001NetApp announced a new version of their object storage solution, the StorageGRID WebScale 10.3.

At a former employer, I first talked with StorageGRID (Bycast at the time) a decade or so ago. At that time, they were focused on medical and healthcare verticals and had a RAIN (redundant array of independent nodes) storage solution.  It has come a long way.

StorageGRID Business is booming

On the call, NetApp announced they sold 50PB of StorageGRID in FY’16 with 20PB of that in the last quarter and also reported 270% Y/Y revenue growth, which means they are starting to gain some traction in the marketplace. Are we seeing an acceleration of object storage adoption?

As you may recall, StorageGRID comes in a software only solution that runs on just about any white box server with DAS or as two hardware appliances: the SG5612 (12 drive); and the SG5660 (60 drive) nodes. You can mix and match any appliance with any white box software only solution, they don’t have to have the same capacity or performance. But all nodes need network and controller/admin node(s) access.

StorageGRID past

grid002Somewhere during Bycast’s journey they developed support for tape archives and information lifecycle management (ILM) for objects. The previous generation, StorageGrid 10.2 had a number of features, including:

  • S3 cloud archive support that allowed objects to be migrated to AWS S3 as they were no longer actively accessed
  • NAS bridge support that allowed CIFS/SMB or NFS access to StorageGRID objects, which could also be read as S3 objects for easier migration to/from object storage;
  • Hierarchical erasure coding option that was optimized for efficiently storing large objects;
  • Node level erasure coding support that can be used to rebuild data for node drive failures, without having to go outside the node data retrieval;
  • Object byte-granular range read support that allowed users to read an object at any byte offset without requiring rebuild;
  • Support for OpenStack Swift API that made StorageGRID objects natively available to any OpenStack service; and
  • Software support for running as Docker containers or as a VM under VMware ESX, or OpenStack KVM that allowed StorageGRID software to run just about anywhere.

StorageGRID present and future

grid003But customers complained StorageGRID was too complex to install and update which required too much hand holding by NetApp professional services. StorageGRID Webscale 10.3 was targeted to address these deficiencies. Some of the features in StorageGrid 10.3, include:

  • Radically simplified, more modern UI, new dashboard and policy wizard/editor, so that it’s a lot easier to manage the StorageGRID. All features of the UI are also available via RESTfull API access and the UI is the same for white box, software only implementations as well as appliance configurations.
  • Simplified automated installation scripts, so that installations that used to take multiple steps, separate software installs and required professional services support, now use a full-solution software stack install, take only minutes and can be done by the customers alone;
  • S3 object versioning support, so that objects can have multiple versions, limited via the UI, if needed, but provide a snapshot-like capability for S3 data that protects against object accidental deletion.
  • grid004ILM policy change predictions/modeling, so that admins can now see how changes to ILM policies will impact StorageGRID.
  • Even more flexibility in DAS storage, so that future StorageGRID configurations can support 10TB drives and 6TB FIPS-140 drive encryption support, which adds to the current drive capacity and data security options already available in StorageGRID.

To top it all off, StorageGRID 10.3 improves performance for both small (30KB) and large (300MB) object get/puts.

  • Small S3 Load Data Router (LDR, 1-thread) object performance has improved ~4X for both PUTs and GETs; and
  • Large S3 LDR (1-thread) object performance has improved ~2X for PUTs and ~4X for GETs.

Object storage market heating up

grid005Apparently, service providers are adopting object storage to  provide competition to AWS, Azure and Google cloud storage for backup and storage archives as well as for DR as a service. Also, many media and other customers managing massive data repositories are turning to object storage to support their multi-site, very large file libraries.  And as more solution vendors support S3 object protocols for data access and archive, something like StorageGRID can become their onsite-offsite storage alternative.

And Amazon, Azure and Google are starting to realize that most enterprise customers are not going to leap to the cloud for everything they do. So, some sort of hybrid solution is needed for the long term. Having an on premises and off premises object storage solution that can also archive/migrate data to the cloud is a great hybrid alternative that takes enterprises one step closer to the cloud.


#VMworld day 1, Cloud Foundation and Cross-Cloud Services

The main keynote topic for today at VMworld was how to address the coming cloud tsunami. Pat citing his own researchers believes that 50% of all workloads (OS instances) will be running in public and private cloud by 2021 and by 2030, 50% of all workloads will be running in the Public Cloud alone. So today VMware announced two new offerings: VMware Cloud Foundation and VMware Cross-Cloud Services.

Cloud Foundation

Cloud Foundation appears to be a bundling of VMware’s SDDC, NSX®, Virtual SAN™ (VSAN) and vSphere® solutions, into a single, integrated stack/package that can be sold and licensed together. No pricing was provided at the show but essentially VMware want’s to allow customers a simple way to deploy a VMware private cloud.

VMware states that Cloud Foundation offers customers up to 6-8X faster cloud deployment at a TCO savings of >40%.

VMware also announced a joint partnership with IBM to sell Cloud Foundation services residing on the IBM Cloud to their customer base. This broaden’s the availability of VMware cloud service offerings beyond vCloud and on premises Cloud Foundation environments.

Cross-Cloud Services

IMG_6819Everyone wants to minimize cloud vendor lockin but that’s not possible today except in a few special cases (NetApp Private Storage and similar capabilities from other vendors, cloud storage gateway services, cloud archive services, etc.).

VMware Cross-Cloud Services is the next step down this path, attempting to provide easier workload/data migration, consolidated cost and workload management and security deployment across the public and private cloud boundaries.

Cross-Cloud Services was in tech preview at the show but it’s intended to make use of standard public cloud defined APIs to provide specialized targeted services to allow better cross-cloud migration and management.

The tech preview showed VMware Cross-Cloud Services deploying an NSX gateway in AWS which allowed NSX to control public cloud IP addresses and then once that was done, one could apply security templates to deploy network encryption between apps and its services. VMware used a sniffer to show the before plain text traffic and the after with encrypted traffic, all done in a matter of minutes. They also showed cost trending information for workloads running across the private and public cloud.

Next they showed a demo (movie) of VMware migrating/cloning a simple app to other public and private cloud environments. They had a public cloud Unicycle IOT app running in Ireland/AWS (I think) with a three tier (web, app, database) app structure/instances and then migrated/cloned that single site 3-tier app to be deployed across multiple cloud (web and app tiers) sites with a single database instance running in a private cloud.

I started thinking this is getting us down the path towards cloud virtualization but in the end, it’s much more targeted services, which run in instances/gateways in the public and private cloud to do very specific migration or management activities. Nonetheless a great first step towards more flexible cross-cloud deployment and management.

VMworld Day 2 looks to be more on current products and enhancements, stay tuned.


Microsoft ESRP database transfer performance by storage interface – chart of the month

SCIESRP160728-001The above chart was included in our e-newsletter Microsoft Exchange Solution Reviewed Program (ESRP) performance report, that went out at the end of July. ESRP reports on a number of metrics but one of the more popular is total (reads + writes) Exchange database transfers per second.

Categories reported on in ESRP include: over 5,000 mailboxes; 1001 to 5000 mailboxes; and 1000 and under mailboxes. For the above chart we created our own category using all submissions up to 10,000 mailboxes. Then we grouped the data using the storage  interface between the host Exchange servers and the storage, and only included ESRP reports that had 10 KRPM disk drives.
Continue reading Microsoft ESRP database transfer performance by storage interface – chart of the month