SSD vs Drive energy use

Hard Disk by Jeff Kubina
Hard Disk by Jeff Kubina

Recently, the Storage Performance Council (SPC) has introduced a new benchmark series, the SPC-1C/E, which provides detailed energy usage for storage subsystems. So far there have been only two published submissions in this category but we look forward to seeing more in the future. The two submissions are for an IBM SSD and a Seagate Savvio (10Krpm) SAS attached storage subsystems.

My only issue with the SPC-1C/E reports is that they focus on a value of nominal energy consumption rather than reporting peak and idle energy usage. I understand that this is probably closer to what an actual data center would see as energy cost but it buries some intrinsic energy use profile differences.

SSD vs Drive power profile differences

The deltas for reported energy consumption for the two current SPC-1C/E submissions show a ~9.6% difference in peak versus nominal energy use for rotating media storage. Similar results for the SSD storage show a difference of ~1.7%. Taking these results for peak versus idle periods, shows the difference for rotating media being 28.5% and for SSD, ~2.8%.

So, the upside for SSD is drive them as hard as you want and it will cost you only a little bit more energy. In contrast, the downside is leave them idle and it will cost almost as much as if you were driving them at peak IO rates.

Rotating media storage seems to have a much more responsive power profile. Drive them hard and it will consume more power, leave them idle and it consumes less power.

Data center view of storage power

Now these differences might not seem significant but given the amount of storage in most shops they could represent significant cost differentials. Although SSD storage consumes less power, it’s energy use profile is significantly flatter than rotating media and will always consume that level of power (when powered on). On the other hand, rotating media consumes more power on average but it’s power profile is more slanted than SSDs and at peak workload consumes much more power than when idle.

Usualy, it’s unwise to generalize from two results. However, everything I know says that these differences in their respective power profiles should persist across other storage subsystem results. As more results are submitted it should be easy to verify whether I am right.