Industrial revolutions, deep learning & NVIDIA’s 3U AI super computer @ FMS 2017

I was at Flash Memory Summit this past week and besides the fire on the exhibit floor, there was a interesting keynote by Andy Steinbach, PhD from NVIDIA on “Deep Learning: Extracting Maximum Knowledge from Big Data using Big Compute”.  The title was a bit much but his session was great.

2012 the dawn of the 4th industrial revolution

Steinbach started off describing AI, machine learning and deep learning as another industrial revolution, similar to the emergence of steam engines, mass production and automation of production. All of which have changed the world for the better.

Steinbach said that AI is been gestating for 50 years now but in 2012 there was a step change in it’s capabilities.

Prior to 2012 hand coded AI image recognition algorithms were able to achieve about a 74%  image recognition level but in 2012, a deep learning algorithm achieved almost 85%, in one year.

And since then it’s been on a linear trend of improvements such that in 2015, current deep learning algorithms are better than human image recognition. Similar step function improvements were seen in speech recognition as well around 2012.

What drove the improvement?

Machine and deep learning depend on convolutional neural networks. These are layers of connected nodes. There are typically an input layer and output layer and N number of internal layers in a network. The connection weights between nodes control the response of the network.

Todays image recognition convolutional networks can have ~10 layers, billions of parameters, take ~30 Exaflops to train, using 10M images and took days to weeks to train.

Image recognition covolutional neural networks end up modeling the human visual cortex which has neurons to recognize edges and other specialized characteristics of a visual field.

The other thing that happened was that convolutional neural nets were translated to execute on GPUs in 2011. Neural networks had been around in AI since almost the very beginning but their computational complexity made them impossible to use effectively until recently. GPUs with 1000s of cores all able to double precision floating point operations made these networks now much more feasible.

Deep learning training of a network takes place through optimization of the node connections weights. This is done via a back propagation algorithm that was invented in the 1980’s.  Back propagation typically depends on “supervised learning” which adjust the weights of the connections between nodes to come closer to the correct answer, like recognizing Sarah in an image.

Deep learning today

Steinbach showed multiple examples of deep learning algorithms such as:

  • Mortgage prepayment predictor system which takes information about a mortgagee, location, and other data and predicts whether they will pre-pay their mortgage.
  • Car automation image recognition system which recognizes people, cars, lanes, road surfaces, obstacles and just about anything else in front of a car traveling a road.
  • X-ray diagnostic system that can diagnose diseases present in people from the X-ray images.

As far as I know all these algorithms use supervised learning and back propagation to train a convolutional network.

Steinbach did show an example of “un-supervised learning” which essentially was fed a bunch of images and did clustering analysis on them.  Not sure what the back propagation tried to optimize but the system was used to cluster the images in the set. It was able to identify one cluster of just military aircraft images out of the data.

The other advantage of convolutional neural networks is that they can be reused. E.g. the X-ray diagnostic system above used an image recognition neural net as a starting point and then ran it against a supervised set of X-rays with doctor provided diagnoses.

Another advantage of deep learning is that it can handle any number of dimensions. Mathematical optimization algorithms can handle a relatively few dimensions but deep learning can handle any number of dimensions.  The number of input dimensions, the number of nodes in each layer and number of layers in your network are only limited by computational power.

NVIDIA’s DGX a deep learning super computer

At the end of Stienbach’s talk he mentioned the DGX appliance designed by NVIDIA for AI research.

The appliance has 8 state of the art NVIDIA GPUs, connected over a high speed NVLink with anywhere from ~29K to ~41K cores depending on GPU selected, and is capable of 170 to 960 Flops (FP16).

Steinbach said this single 3u appliance would have been rated the number one supercomputer in 2004 beating out a building full of servers. If you were to connect 13 (I think) DGX’s together, you would qualify to be on the top 500 super computers in the world.



Photo credit(s): Steinbach’s “Deep Learning: Extracting Maximum Knowledge from Big Data using Big Compute” presentation at FMS 2017.

Old world AI, Checkers, and The Champion

Read an article in The Atlantic this week (How checkers was solved) on Jonathan Schaeffer, the man who solved checkers, and his quest to beat Marion Tinsley, The Champion.

But first some personal history, while I was at university (back in the early 70’s) and first learned how to code in real (Fortran, 360/Assembler, IBM PL/I, Cobol) languages, one independent project I worked on was a checkers playing program. It made use of advanced alpha-beta search optimizations, board analysis routines and move trees.

These were the days of punched card decks and JCL, submitting programs to run as a batch job and getting results hours to days later. For one semester, I won the honor of consuming the most CPU time of any person in the school. I still have the card deck someplace but it may be hard to find a card reader, let alone a PL/I compiler/DOS system to run it.

In any case, better men than I have taken up the checkers challenge over time. And Schaeffer had made it his life’s work to conquer checkers and did it with his program, Chinook.

In my day checkers was a young kid and old person game. It was simple enough to learn but devilishly hard to master. My program got to look about 3.5 moves ahead, Schaeffer’s later program, used during an early match, was looking 16 moves ahead and was improved from there.

Besting The Champion

From the 50s through the early 90s there was one man who was the undisputed Champion of Checkers and that was Tinsley. Although he lost a few games during his time to other men, he never lost a match.

The article talks about how Schaeffer improved Chinook over time and at one time it had beaten Tinsley in two games but still lost the match. With a later version, it beat Tinsley a couple of times and then Tinsley fell ill and had to leave the game, later dying and forfeiting the match.

But even after Tinsley’s death, Schaeffer kept on improving Chinook.

Early on Schaeffer had a checkers endgame database and an opening database that were computed by Chinook as optimal move sequences from valid openings (professional checkers has a set of 3 move openings that players select at random and the game takes off from there) and endgames (positions with limited number’s of pieces to the end of the game).

These opening and endgame databases were stored for later retrieval during a game. This way if a game fell into a set opening or endgame the program could just follow the optimal play that was already computed.

Solving checkers

As computing power increased, Chinook’s end game database started earlier in the game with more pieces on the board and his opening database started working towards later into the game, following opening moves farther into the mid game.

When Schaeffer’s program solved checkers, essentially his opening database and his endgame database met in the middle of the game. And at that point he had the solution to every checkers position/game that could ever be.

AI vs. humans today

AI has changed to a different way of operating over time. When I was coding my checkers program, it was search trees/optimizations and board analysis. In fact, in 1996 IBM Deep Blue used variants of these techniques to beat Garry Kasparov, then World Chess Champion.

Today’s machine learning is less about search algorithms, game analyses, and game (or logic) databases and more about neural nets, machine learning and reinforcement learning.

New AI finally conquered Go only a couple of years ago, a game that’s very much more complex than checkers or chess. But in 2017 Google (Deepmind) AlphaGo didn’t use search trees and board analyses, it used neural nets, machine learning and reinforcement learning to beat Ke Jie, the then World #1 ranked Go Master.

Welcome to the new world of AI.

Photo Credit(s):

Axellio, next gen, IO intensive server for RT analytics by X-IO Technologies

We were at X-IO Technologies last week for SFD13 in Colorado Springs talking with the team and they showed us their new IO and storage intensive server, the Axellio. They want to sell Axellio to customers that need extreme IOPS, very high bandwidth, and large storage requirements. Videos of X-IO’s sessions at SFD13 are available here.

The hardware

Axellio comes in 2U appliance with two server nodes. Each server supports  2 sockets of Intel E5-26xx v4 CPUs (4 sockets total) supporting from 16 to 88 cores. Each server node can be configured with up to 1TB of DRAM or it also supports NVDIMMs.

There are two key differentiators to Axellio:

  1. The FabricExpress™, a PCIe based interconnect which allows both server nodes to access dual-ported,  2.5″ NVMe SSDs; and
  2. Dense drive trays, the Axellio supports up to 72 (6 trays with 12 drives each) 2.5″ NVMe SSDs offering up to 460TB of raw NVMe flash using 6.4TB NVMe SSDs. Higher capacity NVMe SSDS available soon will increase Axellio capacity to 1PB of raw NVMe flash.

They also probably spent a lot of time on packaging, cooling and power in order to make Axellio a reliable solution for edge computing. We asked if it was NEBs compliant and they told us not yet but they are working on it.

Axellio can also be configured to replace 2 drive trays with 2 processor offload modules such as 2x Intel Phi CPU extensions for parallel compute, 2X Nvidia K2 GPU modules for high end video or VDI processing or 2X Nvidia P100 Tesla modules for machine learning processing. Probably anything that fits into Axellio’s power, cooling and PCIe bus lane limitations would also probably work here.

At the frontend of the appliance there are 1x16PCIe lanes of server retained for networking that can support off the shelf NICs/HCAs/HBAs with HHHL or FHHL cards for Ethernet, Infiniband or FC access to the Axellio. This provides up to 2x100GbE per server node of network access.

Performance of Axellio

With Axellio using all NVMe SSDs, we expect high IO performance. Further, they are measuring IO performance from internal to the CPUs on the Axellio server nodes. X-IO says the Axellio can hit >12Million IO/sec with at 35µsec latencies with 72 NVMe SSDs.

Lab testing detailed in the chart above shows IO rates for an Axellio appliance with 48 NVMe SSDs. With that configuration the Axellio can do 7.8M 4KB random write IOPS at 90µsec average response times and 8.6M 4KB random read IOPS at 164µsec latencies. Don’t know why reads would take longer than writes in Axellio, but they are doing 10% more of them.

Furthermore, the difference between read and write IOP rates aren’t close to what we have seen with other AFAs. Typically, maximum write IOPs are much less than read IOPs. Why Axellio’s read and write IOP rates are so close to one another (~10%) is a significant mystery.

As for IO bandwitdh, Axellio it supports up to 60GB/sec sustained and in the 48 drive lax testing it generated 30.5GB/sec for random 4KB writes and 33.7GB/sec for random 4KB reads. Again much closer together than what we have seen for other AFAs.

Also noteworthy, given PCIe’s bi-directional capabilities, X-IO said that there’s no reason that the system couldn’t be doing a mixed IO workload of both random reads and writes at similar rates. Although, they didn’t present any test data to substantiate that claim.

Markets for Axellio

They really didn’t talk about the software for Axellio. We would guess this is up to the customer/vertical that uses it.

Aside from the obvious use case as a X-IO’s next generation ISE storage appliance, Axellio could easily be used as an edge processor for a massive fabric of IoT devices, analytics processor for large RT streaming data, and deep packet capture and analysis processing for cyber security/intelligence gathering, etc. X-IO seems to be focusing their current efforts on attacking these verticals and others with similar processing requirements.

X-IO Technologies’ sessions at SFD13

Other sessions at X-IO include: Richard Lary, CTO X-IO Technologies gave a very interesting presentation on an mathematically optimized way to do data dedupe (caution some math involved); Bill Miller, CEO X-IO Technologies presented on edge computing’s new requirements and Gavin McLaughlin, Strategy & Communications talked about X-IO’s history and new approach to take the company into more profitable business.

Again all the videos are available online (see link above). We were very impressed with Richard’s dedupe session and haven’t heard as much about bloom filters, since Andy Warfield, CTO and Co-founder Coho Data, talked at SFD8.

For more information, other SFD13 blogger posts on X-IO’s sessions:

Full Disclosure

X-IO paid for our presence at their sessions and they provided each blogger a shirt, lunch and a USB stick with their presentations on it.


Google releases new Cloud TPU & Machine Learning supercomputer in the cloud

Last year about this time Google released their 1st generation TPU chip to the world (see my TPU and HW vs. SW … post for more info).

This year they are releasing a new version of their hardware called the Cloud TPU chip and making it available in a cluster on their Google Cloud.  Cloud TPU is in Alpha testing now. As I understand it, access to the Cloud TPU will eventually be free to researchers who promise to freely publish their research and at a price for everyone else.

What’s different between TPU v1 and Cloud TPU v2

The differences between version 1 and 2 mostly seem to be tied to training Machine Learning Models.

TPU v1 didn’t have any real ability to train machine learning (ML) models. It was a relatively dumb (8 bit ALU) chip but if you had say a ML model already created to do something like understand speech, you could load that model into the TPU v1 board and have it be executed very fast. The TPU v1 chip board was also placed on a separate PCIe board (I think), connected to normal x86 CPUs  as sort of a CPU accelerator. The advantage of TPU v1 over GPUs or normal X86 CPUs was mostly in power consumption and speed of ML model execution.

Cloud TPU v2 looks to be a standalone multi-processor device, that’s connected to others via what looks like Ethernet connections. One thing that Google seems to be highlighting is the Cloud TPU’s floating point performance. A Cloud TPU device (board) is capable of 180 TeraFlops (trillion or 10^12 floating point operations per second). A 64 Cloud TPU device pod can theoretically execute 11.5 PetaFlops (10^15 FLops).

TPU v1 had no floating point capabilities whatsoever. So Cloud TPU is intended to speed up the training part of ML models which requires extensive floating point calculations. Presumably, they have also improved the ML model execution processing in Cloud TPU vs. TPU V1 as well. More information on their Cloud TPU chips is available here.

So how do you code a TPU?

Both TPU v1 and Cloud TPU are programmed by Google’s open source TensorFlow. TensorFlow is a set of software libraries to facilitate numerical computation via data flow graph programming.

Apparently with data flow programming you have many nodes and many more connections between them. When a connection is fired between nodes it transfers a multi-dimensional matrix (tensor) to the node. I guess the node takes this multidimensional array does some (floating point) calculations on this data and then determines which of its outgoing connections to fire and how to alter the tensor to send to across those connections.

Apparently, TensorFlow works with X86 servers, GPU chips, TPU v1 or Cloud TPU. Google TensorFlow 1.2.0 is now available. Google says that TensorFlow is in use in over 6000 open source projects. TensorFlow uses Python and 1.2.0 runs on Linux, Mac, & Windows. More information on TensorFlow can be found here.

So where can I get some Cloud TPUs

Google is releasing their new Cloud TPU in the TensorFlow Research Cloud (TFRC). The TFRC has 1000 Cloud TPU devices connected together which can be used by any organization to train machine learning algorithms and execute machine learning algorithms.

I signed up (here) to be an alpha tester. During the signup process the site asked me: what hardware (GPUs, CPUs) and platforms I was currently using to training my ML models; how long does my ML model take to train; how large a training (data) set do I use (ranging from 10GB to >1PB) as well as other ML model oriented questions. I guess there trying to understand what the market requirements are outside of Google’s own use.

Google’s been using more ML and other AI technologies in many of their products and this will no doubt accelerate with the introduction of the Cloud TPU. Making it available to others is an interesting play but this would be one way to amortize the cost of creating the chip. Another way would be to sell the Cloud TPU directly to businesses, government agencies, non government agencies, etc.

I have no real idea what I am going to do with alpha access to the TFRC but I was thinking maybe I could feed it all my blog posts and train a ML model to start writing blog post for me. If anyone has any other ideas, please let me know.


Photo credit(s): From Google’s website on the new Cloud TPU


AI’s Image recognition success feeds sound recognition improvements

I must do reCAPTCHA at least a dozen times a week for various websites I use. It’s become a real pain. And the fact that I know that what I am doing is helping some AI image recognition program do a better job of identifying street signs, mountains, or shop fronts doesn’t reduce my angst.

But that’s the thing with deep learning, machine learning, re-inforcement learning, etc. they all need massive amounts of annotated data that’s a correct interpretation of a scene in order to train properly.

Computers to the rescue

So, when I read a recent article in MIT News that Computers learn to recognize sounds by watching video, I was intrigued. What the researchers at MIT have done is use advanced image recognition to annotate film clips with the names of things that are making sounds on the film. They then fed this automatically annotated data into a sound identifying algorithm to improve its recognition capability.

They used this approach to train their sound recognition system to be  able to identify natural and artificial sounds like bird song, speaking in crowds, traffic sounds, etc.

They tested their newly automatically trained sound recognition against standard labeled sound sets and was able to categorize sound with a 92% accuracy for a 10 category data set and with a 74% accuracy with a 50 category dataset. Humans are able categorize these sounds with a 96% and 81% accuracy, respectively.

AI’s need for annotation

The problem with machine learning is that it needs a massive, properly annotated data set in order to learn properly. But getting annotated data takes too long or is too expensive to do for many things that we want AI for.

Using one AI tool to annotate data to train another AI tool is sort of bootstrapping AI technology. It’s acute trick but may have only limited application. I could only think of only a few more applications of similar technology:

  • Use chest strap or EKG technology to annotate audio clips of heart beat sounds at a wrist or other appendage to train a system to accurately determine pulse rates through sound alone.
  • Use wave monitoring technology to annotate pictures and audio clips of sea waves to train a system to accurately determine wave levels for better tsunami detection.
  • Use image recognition to annotate pictures of food and then use this train a system to recognize food smells (if they ever find a way to record smells).

But there may be many others. Just further refinement of what they have used could lead to finer grained people detection. For example, as (facial) image recognition gets better, it’s possible to annotate speaking film clips to train a sound recognition system to identify people from just hearing their speech. Intelligence applications for such technology are significant.

Nonetheless, I for one am happy that the next reCAPTCHA won’t be having me identify river sounds in a matrix of 9 sound clips.

But I fear there’s enough GreyBeards on Storage podcast recordings and Storage Field Day video clips already available to train a system to identify Ray’s and for sure, Howard’s voice anywhere on the planet…


Photo Credit(s): Wave by Matthew Potter; Waves crashing on Puget Sound by mikeskatieDay 16: Podcasting by Laura Blankenship

The fragility of public cloud IT

I have been reading AntiFragile again (by Nassim Taleb). And although he would probably disagree with my use of his concepts, it appears to me that IT is becoming more fragile, not less.

For example, recent outages at major public cloud providers display increased fragility for IT. Yet these problems, although almost national in scope, seldom deter individual organizations from their migration to the cloud.

Tragedy of the cloud commons

The issues are somewhat similar to the tragedy of the commons. When more and more entities use a common pool of resources, occasionally that common pool can become degraded. But because no-one really owns the common resources no one has any incentive to improve the situation.

Now the public cloud, although certainly a common pool of resources, is also most assuredly owned by corporations. So it’s not a true tragedy of the commons problem. Public cloud corporations have a real incentive to improve their services.

However, the fragility of IT in general, the web, and other electronic/data services all increases as they become more and more reliant on public cloud, common infrastructure. And I would propose this general IT fragility is really not owned by any one person, corporation or organization, let alone the public cloud providers.

Pre-cloud was less fragile, post-cloud more so

In the old days of last century, pre-cloud, if a human screwed up a CLI command the worst they could happen was to take out a corporation’s data services. Nowadays, post-cloud, if a similar human screws up a CLI command, the worst that can happen is that major portions of the internet services of a nation go down.

Strange Clouds by michaelroper (cc) (from Flickr)

Yes, over time, public cloud services have become better at not causing outages, but they aren’t going away. And if anything, better public cloud services just encourages more corporations to use them for more data services, causing any subsequent cloud outage to be more impactful, not less

The Internet was originally designed by DARPA to be more resilient to failures, outages and nuclear attack. But by centralizing IT infrastructure onto public cloud common infrastructure, we are reversing the web’s inherent fault tolerance and causing IT to be more susceptible to failures.

What can be done?

There are certainly things that can be done to improve the situation and make IT less fragile in the short and long run:

  1. Use the cloud for non-essential or temporary data services, that don’t hurt a corporation, organization or nation when outages occur.
  2. Build in fault-tolerance, automatic switchover for public cloud data services to other regions/clouds.
  3. Physically partition public cloud infrastructure into more regions and physically separate infrastructure segments within regions, such that any one admin has limited control over an amount of public cloud infrastructure.
  4. Divide an organizations or nations data services across public cloud infrastructures, across as many regions and segments as possible.
  5. Create a National Public IT Safety Board, not unlike the one for transportation, that does a formal post-mortem of every public cloud outage, proposes fixes, and enforces fix compliance.

The National Public IT Safety Board

The National Transportation Safety Board (NTSB) has worked well for air transportation. It relies on the cooperation of multiple equipment vendors, airlines, countries and other parties. It performs formal post mortems on any air transportation failure. It also enforces any fixes in processes, procedures, training and any other activities on equipment vendors, maintenance services, pilots, airlines and other entities that can impact public air transport safety. At the moment, air transport is probably the safest form of transportation available, and much of this is due to the NTSB

We need something similar for public (cloud) IT services. Yes most public cloud companies are doing this sort of work themselves in isolation, but we have a pressing need to accelerate this process across cloud vendors to improve public IT reliability even faster.

The public cloud is here to stay and if anything will become more encompassing, running more and more of the worlds IT. And as IoT, AI and automation becomes more pervasive, data processes that support these services, which will, no doubt run in the cloud, can impact public safety. Just think of what would happen in the future if an outage occurred in a major cloud provider running the backend for self-guided car algorithms during rush hour.

If the public cloud is to remain (at this point almost inevitable) then the safety and continuous functioning of this infrastructure becomes a public concern. As such, having a National Public IT Safety Board seems like the only way to have some entity own IT’s increased fragility due to  public cloud infrastructure consolidation.


In the meantime, as corporations, government and other entities contemplate migrating data services to the cloud, they should consider the broader impact they are having on the reliability of public IT. When public cloud outages occur, all organizations suffer from the reduced public perception of IT service reliability.

Photo Credits: Fragile by Bart Everson; Fragile Planet by Dave Ginsberg; Strange Clouds by Michael Roper

Mixed progress on self-driving cars

Read an article the other day on the progress in self-driving cars in NewsAtlas (DMV reports self-driving cars are learning — fast). More details are available from their source (CA [California] DMV [Dept. of Motor Vehicles] report).

The article reported on what’s called disengagement events that occurred on CA roads. This is where a driver has to take over from the self-driving automation to deal with a potential mis-queue, mistake, or accident.

Waymo (Google) way out ahead

It appears as if Waymo, Google’s self-driving car spin out, is way ahead of the pack. It reported only 124 disengages for 636K mi (~1M km) or ~1 disengage every ~5.1K mi (~8K km). This is ~4.3X better rate than last year, 1 disengage for every ~1.2K mi (1.9K km).

Competition far behind

Below I list some comparative statistics (from the DMV/CA report, noted above), sorted from best to worst:

  • BMW: 1 disengage 638 mi (1027 km)
  • Ford: 3 disengages for 590 mi (~950 km) or 1 disengage every ~197 mi (~317 km);
  • Nissan: 23 disengages for 3.3K mi (3.5K km) or 1 disengage every ~151 mi (~243 km)
  • Cruise (GM) automation: had 181 disengagements for ~9.8K mi (~15.8K km) or 1 disengage every ~54 mi (~87 km)
  • Delphi: 149 disengages for ~3.1K mi (~5.0K km) or 1 disengage every ~21 mi (~34 km);

There was no information on previous years activities so no data on how competitors had improved over the last year.

Please note: the report only applies to travel on California (CA) roads. Other competitors are operating in other countries and other states (AZ, PA, & TX to name just a few). However, these rankings may hold up fairly well when combined with other state/country data. Thousand(s) of kilometers should be adequate to assess self-driving cars disengagement rates.

Waymo moving up the (supply chain) stack

In addition, according to a Recode, (The Google car was supposed to disrupt the car industry) article, Waymo is moving from a (self-driving automation) software supplier to a hardware and software supplier to the car industry.

Apparently, Google has figured out how to reduce their sensor (hardware) costs by a factor of 10X, bringing the sensor package down from $75K to $7.5K, (most probably due to a cheaper way to produce Lidar sensors – my guess).

So now Waymo is doing about ~65 to ~1000 X more (CA road) miles than any competitor, has a much (~8 to ~243 X) better disengage rate and is  moving to become a major auto supplier in both hardware and software.

It’s going to be an interesting century.

If the 20th century was defined by the emergence of the automobile, the 21st will probably be defined by dominance of autonomous operations.


Photo credits: Substance E′TS; and Waymo on the road


Hitachi and the coming IoT gold rush

img_7137Earlier this week I attended Hitachi Summit 2016 along with a number of other analysts and Hitachi executives where Hitachi discussed their current and ongoing focus on the IoT (Internet of Things) business.

We have discussed IoT before (see QoM1608: The coming IoT tsunami or not, Extremely low power transistors … new IoT applications). Analysts and companies predict  ~200B IoT devices by 2020 (my QoM prediction is 72.1B 0.7 probability). But in any case there’s a lot of IoT activity going to come online, very shortly. Hitachi is already active in IoT and if anything, wants it to grow, significantly.

Hitachi’s current IoT business

Hitachi is uniquely positioned to take on the IoT business over the coming decades, having a number of current businesses in industrial processes, transportation, energy production, water management, etc. Over time, all these industries and more are becoming much more data driven and smarter as IoT rolls out.

Some metrics indicating the scale of Hitachi’s current IoT business, include:

  • Hitachi is #79 in the Fortune Global 500;
  • Hitachi’s generated $5.4B (FY15) in IoT revenue;
  • Hitachi IoT R&D investment is $2.3B (over 3 years);
  • Hitachi has 15K customers Worldwide and 1400+ partners; and
  • Hitachi spends ~$3B in R&D annually and has 119K patents

img_7142Hitachi has been in the OT (Operational [industrial] Technology) business for over a century now. Hitachi has also had a very successful and ongoing IT business (Hitachi Data Systems) for decades now.  Their main competitors in this IoT business are GE and Siemans but neither have the extensive history in IT that Hitachi has had. But both are working hard to catchup.

Hitachi Rail-as-a-Service

img_7152For one example of what Hitachi is doing in IoT, they have recently won a 27.5 year Rail-as-a-Service contract to upgrade, ticket, maintain and manage all new trains for UK Rail.  This entails upgrading all train rolling stock, provide upgraded rail signaling, traffic management systems, depot and station equipment and ticketing services for all of UK Rail.

img_7153The success and profitability of this Hitachi service offering hinges on their ability to provide more cost efficient rail transport. A key capability they plan to deliver is predictive maintenance.

Today, in UK and most other major rail systems, train high availability is often supplied by using spare rolling stock, that’s pre-positioned and available to call into service, when needed. With Hitachi’s new predictive maintenance capabilities, the plan is to reduce, if not totally eliminate the need for spare rolling stock inventory and keep the new trains running 7X24.

img_7145Hitachi said their new trains capture 48K data items and generate over ~25GB/train/day. All this data, will be fed into their new Hitachi Insight Group Lumada platform which includes Pentaho, HSDP (Hitachi Streaming Data Platform) and their Content Analytics to analyze train data and determine how best to keep the trains running. Behind all this analytical power will no doubt be HDS HCP object store used to keep track of all the train sensor data and other information, Hitachi UCP servers to process it all, and other Hitachi software and hardware to glue it all together.

The new trains and services will be rolled out over time, but there’s a pretty impressive time table. For instance, Hitachi will add 120 new high speed trains to UK Rail by 2018.  About the only thing that Hitachi is not directly responsible for in this Rail-as-a-Service offering, is the communications network for the trains.

Hitachi other IoT offerings

Hitachi is actively seeking other customers for their Rail-as-a-service IoT service offering. But it doesn’t stop there, they would like to offer smart-water-as-a-service, smart-city-as-a-service, digital-energy-as-a-service, etc.

There’s almost nothing that Hitachi currently supplies as industrial products that they wouldn’t consider offering in an X-as-a-service solution. With HDS Lumada Analytics, HCP and HDS storage systems, Hitachi UCP converged infrastructure, Hitachi industrial products, and Hitachi consulting services, together they are primed to take over the IoT-industrial products/services market.

Welcome to the new Hitachi IoT world.