Data banks, data deposits & data withdrawals in the data economy – part 1

perspective by anomalous4 (cc) (from Flickr)
Big data visualization, Facebook friend connections
Facebook friend carrousel by antjeverena (cc) (from flickr)

Read an interesting article this week in The Atlantic, Why Technology Favors Tyranny by Yuvai Noah Harari, about the inevitable future of technology and how the use of data will drive it.

At the end of the article Harari talks about the need to take back ownership of our data in order to gain some control over the tech giants that currently control our data.

In part 3, Harari discusses the coming AI revolution and the impact on humanity. Yes there will still be jobs, but early on less jobs for unskilled labor and over time less jobs for skilled labor.

Yet, our data continues to be valuable. AI neural net (NN) accuracy increases as a function of the amount of data used to train it. As a result,  he has the most data creates the best AI NN. This means our data has value and can be used over and over again to train other AI NNs. This all sounds like data is just another form of capital, at least for AI NN training.

If only we could own our data, then there would still be value from people’s (digital) exertions (labor), regardless of how much AI has taken over the reigns of production or reduced the need for human work.Safe by cjc4454 (cc) (from flickr)

Safe by cjc4454 (cc) (from flickr)What we need is data (savings) banks. These banks would hold people’s data, gathered from social media likes/dislikes,  cell phone metadata, app/web history, search history, credit history, purchase history,  photo/video streams, email streams, lab work, X-rays, wearables info, etc. Probably many more categories need to be identified but ultimately ALL the digital data we generate today would need to be owned by people and deposited in their digital bank accounts.

Data deposits?

Social media companies, telecom, search companies, financial services app companies, internet  providers, etc. anywhere you do business should supply a copy of the digital data they gather for a person back to that persons data bank account.

There are many technical problems to overcome here but it could be as simple as an object storage bucket, assigned to each person that each digital business deposits (XML versions of) our  digital data they create for everyone that uses their service. They would do this as compensation for using our data in their business activities.

How to change data ownership?

Today, we all sign user agreements which essentially gives a company the rights to our data in perpetuity. That needs to change. I see a few ways that this change could come about

  1. Countries could enact laws to insure personal data ownership resides in the person generating it and enforce periodic distribution of this data
  2. Market dynamics could impel data distribution, e.g. if some search firm supplied data to us, we would be more likely to use them.
  3. Societal changes, as AI becomes more important to profit making activities and reduces the need for human work, and as data continues to be an important factor in AI success, data ownership becomes essential to retaining the value of human labor in society.

Probably, all of the above and maybe more would be required to change the ownership structure of data.

How to profit from data?

Technical entities needing data to train AI NNs could solicit data contributions through an Initial Data Offering (IDO). IDO’s would specify types of data required and a proportion of AI NN ownership, they would cede to all  data providers. Data providers would be apportioned ownership based on the % identified and the number of IDO data subscribers.

perspective by anomalous4 (cc) (from Flickr)
perspective by anomalous4 (cc) (from Flickr)

Data banks would extract the data requested by the IDO and supply it to the IDO entity for use. For IDOs, just like ICO’s or IPO’s, some would fail and others would succeed. But the data used in them would represent an ownership share sort of like a  stock (data) certificate in the AI NN.

Data bank responsibilities

Data banks would have various responsibilities and would need to collect fees to perform them. For example, data banks would be responsible for:

  1. Protecting data deposits – to insure data deposits are never lost, are never accessed without permission, are always trackable as to how they are used..
  2. Performing data deposits – to verify that data is deposited from proper digital entities, to validate that data deposits are in a usable form and to properly store the data in a customers object storage bucket.
  3. Performing data withdrawals – upon customer request, to extract all the appropriate data requested by an IDO,  anonymize it, secure it, package it and send it to the IDO originator.
  4. Reconciling data accounts – to track data transactions, data banks would supply a monthly statement that identifies all data deposits and data withdrawals, data revenues and data expenses/fees.
  5. Enforcing data withdrawal types – to enforce data withdrawal types, as data  withdrawals can have many different characteristics, such as exclusivity, expiration, geographic bounds, etc. Data banks would need to enforce withdrawal characteristics, at least to the extent they can
  6. Auditing data transactions – to insure that data is used properly, a consortium of data banks or possibly data accountancies would need to audit AI training data sets to verify that only data that has been properly withdrawn is used in trying the NN. .

AI NN, tools and framework responsibilities

In order for personal data ownership to work well, AI NNs, tools and frameworks used today would need to change to account for data ownership.

  1. Generate, maintain and supply immutable data ownership digests – data ownership digests would be a sort of stock registry for the data used in training the AI NN. They would need to be a part of any AI NN and be viewable by proper data authorities
  2. Track data use – any and all data used in AI NN training should be traceable so that proper data ownership can be guaranteed.
  3. Identify AI NN revenues – NN revenues would need to be isolated, identified and accounted for so that data owners could be rewarded.
  4. Identify AI NN data expenses – NN data costs would need to somehow be isolated, identified and accounted for so that data expenses could be properly deducted from data owner awards. .

At some point there’s a need for almost a data profit and loss statement as well as a data balance sheet for at an AI NN level. The information supplied above should make auditing data ownership, use and rewards much more feasible. But it all starts with identifying data ownership and the data used in training the AI.

~~~~

There are a thousand more questions that come to mind. For example

  • Who owns earth sensing satellite, IoT sensors, weather sensors, car sensors etc. data? Everyone in the world (or country) being monitored is laboring to create the environment sensed by these devices. Shouldn’t this sensor data be apportioned to the people of the world or country where these sensors operate.
  • Who pays data bank fees? The generators/extractors of the data could pay in addition to providing data deposits for the privilege to use our data. I could also see the people paying.  Having the company pay would give them an incentive to make the data load be as efficient and complete as possible. Having the people pay would induce them to use their data more productively.
  • What’s a decent data expiration period? Given application time frames these days, 7-15 years would make sense. But what happens to the AI NN when data expires. Some way would need to be created to extract data from a NN, or the AI NN would need to cease being used and a new one would  need to be created with new data.
  • Can data deposits be rented/sold to data aggregators? Sort of like a AI VC partnership only using data deposits rather than money to fund AI startups.
  • What happens to data deposits when a person dies? Can one inherit a data deposits, would a data deposit inheritance be taxable as part of an estate transfer?

In the end, as data is required to train better AI, ownership of our data makes us all be capitalist (datalists) in the creation of new AI NNs and the subsequent advancement of society. And that’s a good thing.

Comments?

 

 

Marketing meet Big Data, call records, credit card purchases & demographics

Read an article in Science Daily (Understanding urban issues through credit cards) that talked about a study published in Nature (Sequences of purchases in credit card data reveals lifestyles of urban populations) that applies big data to B2C marketing.

The researchers examined call data records (CDRs), credit card transactions records (CCRs) and demographic (age, sex, residential zip code, wage level, etc.) data and did a cross table between them to identify sequences of purchases. They then used these sequences to identify different lifestyle groups in the urban area.

Marketing 2.0

The analyzed data from Mexico City, Mexico. The CCR data was collected for 10 weeks across 150K users. The had CDR data for 1/10th of the users for 6 months surrounding the 10 weeks duration. Credit card adoption is still low in Mexico (18%), so the analysis may be biased.  When thy matched CCR expenditures against median wages in a district and they found their participants came from higher wage populations. Their data also spanned all districts within the city.

The analysis identified sequences of purchase categories as well as expenditures.  They characterized purchase sequences as “words”.

 

 

 

Using the word data and further statistical analysis they were able to split the population up into 5 distinct lifestyle groups. 

The loops of icons above represent major purchase categories derived from the CCR data merchant category codes (MCC).  Each of the rings in “a” above show the same 12 major MCC purchase categories. If you look at each ring, one can identify a central or core node that seems to have the most incoming or outgoing arks. These seem to be the central purchases made by that lifestyle group after which they branch out to other purchase categories.

There are five different lifestyle categories (they also show the city average) delineated in the data:

  • Commuter – generally they have to pay tolls, have longer travel between home and work and have a diverse sequence of purchase that occurs after purchases from the toll category.
  • Household – purchases seem to center on grocery stores/supermarkets and then branch off from there.
  • Young – purchases seem to center on the taxicab category and then go to computer-networking, restaurants, grocery stores/supermarkets.
  • Hi-Tech – purchases seem to center on computer-networking,  then go to gas stations, grocery stores/supermarkets, restaurants, and telecomm.
  • Average – seems to have two focuses grocery stores/supermarkets and restaurants and then goes out from there to gas stations, specialty food stores and department stores.
  • Dinner-out – purchases seem to center on restaurants and then branch out fro there to computer-networking, gas stations, supermarkets, fast food, etc.

In “b”  breakout above, you can see the socio-demographic characteristics of each lifestyle group as compared with the median user. And in “c” one can see some population histograms of the demographic data.

They were then able to use the CDR data to construct a map of which lifestyle called which other life style to identify call correlation data. Most calls were contacts between the same groups but the second most active call was calls to householders.

They took this same analysis to another city in Mexico and came up with six  lifestyle categories, five of the same and a different one.

~~~~

When I went to Uni (a long long time ago), I attended an urban geography class that was much more scientific and mathematical than any other geography class I had ever attended. I remember asking the professor when did geography become an exact science. As best as I can recall, he laughed and said over the last decade.

Analysis like the above could make B2C marketing, almost an exact science.

Big Data meet Marketing – Buyer beware.

Comments?

Photo Credit(s):  All charts/photos are from the Nature article Sequences of purchase in credit card data reveal lifestyles in urban populations

Hitachi Vantara HCP, hits it out of the park #datacenternext

We talked with Hitachi Vantara this past week at a special Tech Field Day extra event (see videos here). This was an all day affair and was a broad discussion of Hitachi’s infrastructure portfolio.

There was much of interest in the days session but one in particular caught my eye and that was the session on Hitachi Vantara’s Content Platform (HCP).

Hitachi has a number of offerings surrounding their content platform, including:

  • HCP, on premises object store:
  • HCP Anywhere, enterprise file synch and share using HCP,
  • HCP Content Intelligence, compliance and content search for HCP object storage, and
  • HCP Data Ingestor, file gateway to HCP object storage.

I already knew about these  offerings but had no idea how successful HCP has been over the years. inng to Hitachi Vantara, HCP has over 4000 installations worldwide with over 2000 customers and is currently the number 1 on premises, object storage solution in the world.

For instance, HCP is installed in 4 out of the 5 largest banks, insurance companies, and TelCos worldwide. HCP Anywhere has over a million users with over 15K in Hitachi alone.  Hitachi Vantara has some customers using HCP installations that support 4000-5000 object ingests/sec.

HCP software supports geographically disbursed erasure coding, data compression, deduplication, and encryption of customer object data.

HCP development team has transitioned to using micro services/container based applications and have developed their Foundry Framework to make this easier. I believe the intent is to ultimately redevelop all HCP solutions using Foundry.

Hitachi mentioned a couple of customers:

  • US Government National Archives which uses HCP behind Pentaho to preserve presidential data and metadata for 100 years, and uses all open APIs to do so
  • UK Rabo Bank which uses HCP to support compliance monitoring across a number of data feeds
  • US  Ground Support which uses Pentaho, HCP, HCP Content Intelligence and HCP Anywhere  to support geospatial search to ascertain boats at sea and what they are doing/shipping.

There’s a lot more to HCP and Hitachi Vantara than summarized here and I would suggest viewing the TFD videos and check out the link above for more information.

Comments?

Want to learn more, see these other TFD bloggers posts:

Hitachi is reshaping its IT division by Andrew Mauro (@Andrew_Mauro)

MIT’s new Navion chip for better Nano drone navigation

Read an article this week in Science Daily (Chip upgrade help’s bee-sized drones navigate) about a recent chip created by MIT, called Navion, that reduces size and power consumption for electronics used in drone navigation. The chip is also documented on MIT’s Navion project homepage and in a technical  paper describing the new VIO (Visual-Inertial Odometry ) Navion chip.

The Navion chip can perform inertial measurement at 52Khz as well as process video streams of 752×480 stereo images at 171 frames per second in a 20 sqmm package consuming only 24mW of power. The chip was fabricated on a 65nm CMOS process line.

Navion is the result of a collaborative design process which optimized electronics required to perform  drone navigation processing. By placing all the memory required for inertial measurement and image analysis and all the processing hardware on the same chip, they have substantially reduced power consumption and space requirements for drone navigation.

Navion architecture

Navion uses a state of the art, non-linear factor graph optimization algorithm to navigate in space.  It doesn’t sound like  DL neural net image recognition but more like a statistical/probabilistic approach to image mapping and place estimation. The chip uses image compression, two stage memory, and sparse linear solver memory to reduce image processing memory requirements from 3.5MB to less than 1MB.

The chip uses 3 inputs: two images (right &  left image) and IMU (inertial management unit sensor) and has one (complex output), its estimate of the current state of where it is on the map.

Navion processing creates and maintains a 3D map using stereo images and provides navigational support to move through that space.  According to the paper, the Navion chip updates the state(s) and sparse 3D map at a KF (Kalman filter) rate of between 16 and 90 fps. Navion also offers configurations options to maximize accuracy, throughput or energy efficiency.

Navion compares well to other navigation electronics

The table shows comparisons of the Navion chip against other traditional navigational systems that use Xeon, ARM or FPGA chips. As far as I can tell it’s either much better or at least on a par with these other larger, more complex, power hungry systems.

Nano drones are coming to our space, sooner than anyone expects.

Comments?

Photo credit(s): System overview from Navion project page (c) 2018 MIT;

Picture of chip with layout  from Navion project page (c) 2018 MIT;

Navion: A Fully Integrated Energy-Efficient Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones (c) 2018 MIT

Stanford Data Lab students hit the ground running…

Read an article (Students confront the messiness of data) today about Stanford’s Data Lab  and how their students are trained to cleanup and analyze real world data.

The Data Lab teaches two courses the Data Challenge Lab course and the Data Impact Lab course. The Challenge Lab is an introductory course in data gathering, cleanup and analysis. The Impact Lab is where advanced students tackle real world, high impact problems through data analysis.

Data Challenge Lab

Their Data Challenge Lab course is a 10 week course with no pre-requisites that teaches students how to analyze real world data to solve problems.

Their are no lectures. You’re given project datasets and the tools to manipulate, visualize and analyze the data. Your goal is to master the tools, cleanup the data and gather insights from the data. Professors are there to provide one on one help so you can step through the data provided and understand how to use the tools.

In the information provided on their website there were no references and no information about the specific tools used in the Data Challenge Lab to manipulate, visualize and analyze the data. From an outsiders’ viewpoint it would be great to have a list of references or even websites describing the tools being used and maybe the datasets that are accessed.

Data Impact Lab

The Data Impact lab course is an independent study course, whose only pre-req is the Data Challenge Lab.

Here students are joined into interdisplinary teams with practitioner partners to tackle ongoing, real world problems with their new data analysis capabilities.

There is no set time frame for the course and it is a non-credit activity. But here students help to solve real world problems.

Current projects in the Impact lab include:

  • The California Poverty Project  to create an interactive map of poverty in California to supply geographic guidance to aid agencies helping the poor
  • The Zambia Malaria Project to create an interactive map of malarial infestation to help NGOs and other agencies target remediation activity.

Previous Impact Lab projects include: the Poverty Alleviation Project to provide a multi-dimensional index of poverty status for areas in Kenya so that NGOs can use these maps to target randomized experiments in poverty eradication and the Data Journalism Project to bring data analysis tools to breaking stories and other journalistic endeavors.

~~~~

Courses like these should be much more widely available. It’s almost the analog to the scientific method, only for the 21st century.

Science has gotten to a point, these days, where data analysis is a core discipline that everyone should know how to do. Maybe it doesn’t have to involve Hadoop but rudimentary data analysis, manipulation, and visualization needs to be in everyone’s tool box.

Data 101 anyone?

Photo Credit(s): Big_Data_Prob | KamiPhuc;

Southbound traffic speeds on Masonic avenue on different dates | Eric Fisher;

Unlucky Haiti (1981-2010) | Jer Thorp;

Bristol Cycling Level by Wards 2011 | Sam Saunders

Western Digital at SFD15: ActiveScale object storage

Phill Bullinger and his staff from Western Digital presented at Storage Field Day 15 (SFD15) on a number of their enterprise products including Tegile and IntelliFlash but the one that caught my interest was their ActiveScale object store acquired from Amplidata back in 2015.

ActiveScale is an onprem, object storage system that provides cloud-like  economics for customer data.

ActiveScale Hardware

ActiveScale systems can both scale up and scale out within a single site. ActiveScale systems have both  storage and system nodes. Storage nodes perform erasure coding and System nodes are control points and metadata managers for the object store.

ActiveScale comes in two appliance configurations that contain both storage and system nodes and storage required.  The two appliances are:

  • ActiveScale P100 is a 7U 720TB pod system and A full rack of P100s can read 8GB/sec and can have 17-9s data availability. The P100 can scale up to 2.1PB in a single rack and up to 18PB in the same namespace. The P100 is a higher performing solution with better performing storage and system nodes
  • ActiveScale X100 is a 42U rack scale solution that holds up to 588 12TB drives or 5.8PB per rack. The X100 can scale up to 9 racks or 52PB in the same namespace. The X100 is a denser configuration with only 6 storage nodes and as such, has a better $/GB than the P100 above.

As WDC is both the supplier of the ActiveScale appliance and a supplier of disk storage they can be fairly aggressive with pricing on appliance systems.

Data integrity in ActiveScale

They make a point of saying that ActiveScale object metadata and data are stored separately. By separating data and metadata, they claim to be  more resilient to system failures. Object metadata is 3 way replicated, in a replicated database, residing in system nodes. Other object systems often store metadata and object data in the same way.

Object data can be erasure coded. That is, object data is chunked, erasure coding protected and then spread across multiple disk drives for data protection. ActiveScale erasure coding is called BitSpread. With BitSpread customers identify the number of disk drives to spread object data across and the number of drive failures the system should recover from without data loss.

A typical BitSpread configuration splits object data into 18 chunks and spreads these chunks across storage columns. A storage column is from 6-18 storage nodes. There’s no pre-allocated space in BitSpread. Object data chunks are allocated to disk storage based on current capacity and performance of the system, within redundancy constraints.

In addition, ActiveScale has a background task called BitDynamics that scans  erasure coded chunks and does a mathematical health check on the object data. If a chunk is bad, the object data chunk can be recovered and re-erasure coded back to proper health.

WDC performance testing shows that BitDynamics has 0 performance degradation when performing re-erasure coding. Indeed, they took out 98 drives in an ActiveScale cluster and BitDynamics re-coded all that data onto other disk drives and detected no performance impact. No indication how long  re-encoding 98 disk drives of data took nor the % of object store capacity utilization at the time of the test but presumably there’s a report someplace to back this up

Unlike many public cloud based object storage systems, ActiveScale is strongly consistent. That is object puts (writes) are not responded back to the entity doing the put,  until the object metadata and object data are properly and safely recorded in the object store.

ActiveScale also supports 3 site erasure coding. GeoSpread is their approach to erasure coding across sites. In this case, object metadata is replicated across 3 system nodes across the sites. Object data and erasure coded information is split into 20 chunks which are then spread across the three sites.  This way if any one site goes down, the other two sites have sufficient metadata, object data chunks and erasure coded information to reconstruct the data.

ActiveScale 5.2 now supports asynch replication. That is any one ActiveScale cluster can replicate to any other ActiveScale cluster located continent distances away.

Unclear how GeoSpread and asynch replication would interact together, but my guess is that each of the 3 GeoSpread sites could be asynchronously replicated to 3 other sites for maximum redundancy.

Both GeoSpread and ActiveScale replication impact performance,  depending on how far the sites are from one another and the speed and bandwidth of the links between sites.

ActiveScale markets

ActiveScale’s biggest market is media and entertainment (M&E), mostly used for media archive or tape replacement/augmentation. WDC showed one customer case study for the Montreaux Jazz Festival, which migrated 49 years of performance videos up to ActiveScale and can now stream any performance, on request, without delay. Montreax media is GeoSpread across 3 sites in France. Another option is to perform transcoding on the object media in realtime and stream the transcoded media.

Another large market is Bio/Life Sciences. Medical & biological scanners are transitioning to higher resolution scans which take more data space. And this sort of medical information needs to be kept a long time

Data analytics on ActiveScale

One other emerging market is data analytics. With the new S3A (S3 adapter), Hadoop clusters can now support object storage as a 2nd tier. One problem with data analytics is that they have lots of data and storing it in triplicate, costs an awful lot.

In big data world, datasets can get very large very quickly. Indeed PB sizes data sets aren’t that unusual. And with triple replication (in native HDFS). When HDFS runs out of space you have to delete data. Before S3A, the only way you could increase storage you had to scale out (with compute and storage and networking) in order to add capacity.

Using Hadoop’s S3A, ActiveScale’s can provide cold archive for data analytics.  From a Hadoop user/application perspective, S3A ActiveScale storage looks like just another directory under HDFS (Hadoop Data File System). You can run MapReduce or other Hadoop application directly against object buckets. But a more realistic approach is to move inactive or cold data from an disk resident HDFS directory to a S3A directory

HDFS and MapReduce are tightly coupled and were designed to have data close to where computation happens. So,  as long as the active data or working set data is on HDFS disk storage or directly in memory the rest of the (inactive) data could all be placed on S3A object storage. Inactive data is normally historical data no longer being actively analyzed while newer data would be actively analyzed. Older, inactive data can be manually or automatically archived off to S3A. With HIVE you can partition your database to have active data in HDFS disk storage and inactive data in S3A.

Another approach is if the active, working set data can all fit directly in memory then the data can reside on S3A object storage. This way the data is read from S3A storage into memory, analyzed there and output be done back to object store or HDFS disk. Because the data is only read (loaded) once, there’s only a minimal performance penalty to use S3A storage.

Western Digital is an active contributor to Hadoop S3A and have recently added performance improvements to S3A, such as better caching, partial object reading, and core XML performance tuning options.

~~~~
If your interested in learning more about Western Digital ActiveScale, check out the videos referenced earlier and their website.

Also you may be interested in these other posts on the WD sessions at SFD15:

The A is for Active, The S is for Scale by Dan Firth (@PenguinPunk)

Comments?

Random access, DNA object storage system

Read a couple of articles this week Inching closer to a DNA-based file system in ArsTechnica and DNA storage gets random access in IEEE Spectrum. Both of these seem to be citing an article in Nature, Random access in large-scale DNA storage (paywall).

We’ve known for some time now that we can encode data into DNA strings (see my DNA as storage … and Genomic informatics takes off posts).

However, accessing DNA data has been sequential and reading and writing DNA data has been glacial. Researchers have started to attack the sequentiality of DNA data access. The prize, DNA can store 215PB of data in one gram and DNA data can conceivably last millions of years.

Researchers at Microsoft and the University of Washington have come up with a solution to the sequential access limitation. They have used polymerase chain reaction (PCR) primers as a unique identifier for files. They can construct a complementary PCR primer that can be used to extract just DNA segments that match this primer and amplify (replicate) all DNA sequences matching this primer tag that exist in the cell.

DNA data format

The researchers used a Reed-Solomon (R-S) erasure coding mechanism for data protection and encode the DNA data into many DNA strings, each with multiple (metadata) tags on them. One of tags is the PCR primer tag header, another tag indicates the position of the DNA data segment in the file and an end of data tag that is the same PCR primer tag.

The PCR primer tag was used as sort of a file address. They could configure a complementary PCR tag to match the primer tag of the file they wanted to access and then use the PCR process to replicate (amplify) only those DNA segments that matched the searched for primer tag.

Apparently the researchers chunk file data into a block of 150 base pairs. As there are 2 complementary base pairs, I assume one bit to one base pair mapping. As such, 150 base pairs or bits of data per segment means ~18 bytes of data per segment. Presumably this is to allow for more efficient/effective encoding of data into DNA strings.

DNA strings don’t work well with replicated sequences of base pairs, such as all zeros. So the researchers created a random sequence of 150 base pairs and XOR the file DNA data with this random sequence to determine the actual DNA sequence to use to encode the data. Reading the DNA data back they need to XOR the data segment with the random string again to reconstruct the actual file data segment.

Not clear how PCR replicated DNA segments are isolated and where they are originally decoded (with a read head). But presumably once you have thousands to millions of copies of a DNA segment,  it’s pretty straightforward to decode them.

Once decoded and XORed, they use the R-S erasure coding scheme to ensure that the all the DNA data segments represent the actual data that was encoded in them. They can then use the position of the DNA data segment tag to indicate how to put the file data back together again.

What’s missing?

I am assuming the cellular data storage system has multiple distinct cells of data, which are clustered together into some sort of organism.

Each cell in the cellular data storage system would hold unique file data and could be extracted and a file read out individually from the cell and then the cell could be placed back in the organism. Cells of data could be replicated within an organism or to other organisms.

To be a true storage system, I would think we need to add:

  • DNA data parity – inside each DNA data segment, every eighth base pair would be a parity for the eight preceding base pairs, used to indicate when a particular base pair in eight has mutated.
  • DNA data segment (block) and file checksums –  standard data checksums, used to verify and correct for double and triple base pair (bit) corruption in DNA data segments and in the whole file.
  • Cell directory – used to indicate the unique Cell ID of the cell, a file [name] to PCR primer tag mapping table, a version of DNA file metadata tags, a version of the DNA file XOR string, a DNA file data R-S version/level, the DNA file length or number of DNA data segments, the DNA data creation data time stamp, the DNA last access date-time stamp,and DNA data modification data-time stamp (these last two could be omited)
  • Organism directory – used to indicate unique organism ID, organism metadata version number, organism unique cell count,  unique cell ID to file list mapping, cell ID creation data-time stamp and cell ID replication count.

The problem with an organism cell-ID file list is that this could be quite long. It might be better to somehow indicate a range or list of ranges of PCR primer tags that are in the cell-ID. I can see other alternatives using a segmented organism directory or indirect organism cell to file lists b-tree, which could hold file name lists to cell-ID mapping.

It’s unclear whether DNA data storage should support a multi-level hierarchy, like file system  directories structures or a flat hierarchy like object storage data, which just has buckets of objects data. Considering the cellular structure of DNA data it appears to me more like buckets and the glacial access seems to be more useful to archive systems. So I would lean to a flat hierarchy and an object storage structure.

Is DNA data is WORM or modifiable? Given the effort required to encode and create DNA data segment storage, it would seem it’s more WORM like than modifiable storage.

How will the DNA data storage system persist or be kept alive, if that’s the right word for it. There must be some standard internal cell mechanisms to maintain its existence. Perhaps, the researchers have just inserted file data DNA into a standard cell as sort of junk DNA.

If this were the case, you’d almost want to create a separate, data  nucleus inside a cell, that would just hold file data and wouldn’t interfere with normal cellular operations.

But doesn’t the PCR primer tag approach lend itself better to a  key-value store data base?

Photo Credit(s): Cell structure National Cancer Institute

Prentice Hall textbook

Guide to Open VMS file applications

Unix Inodes CSE410 Washington.edu

Key Value Databases, Wikipedia By ClescopOwn work, CC BY-SA 4.0, Link