Hitachi Vantara HCP, hits it out of the park #datacenternext

We talked with Hitachi Vantara this past week at a special Tech Field Day extra event (see videos here). This was an all day affair and was a broad discussion of Hitachi’s infrastructure portfolio.

There was much of interest in the days session but one in particular caught my eye and that was the session on Hitachi Vantara’s Content Platform (HCP).

Hitachi has a number of offerings surrounding their content platform, including:

  • HCP, on premises object store:
  • HCP Anywhere, enterprise file synch and share using HCP,
  • HCP Content Intelligence, compliance and content search for HCP object storage, and
  • HCP Data Investor, file gateway to HCP object storage.

I already knew about these  offerings but had no idea how successful HCP has been over the years. According to Hitachi Vantara, HCP has over 4000 installations worldwide with over 2000 customers and is currently the number 1 on premises, object storage solution in the world.

For instance, HCP is installed in 4 out of the 5 largest banks, insurance companies, and TelCos worldwide. HCP Anywhere has over a million users with over 15K in Hitachi alone.  Hitachi Vantara has some customers using HCP installations that support 4000-5000 object ingests/sec.

HCP software supports geographically disbursed erasure coding, data compression, deduplication, and encryption of customer object data.

HCP development team has transitioned to using micro services/container based applications and have developed their Foundry Framework to make this easier. I believe the intent is to ultimately redevelop all HCP solutions using Foundry.

Hitachi mentioned a couple of customers:

  • US Government National Archives which uses HCP behind Pentaho to preserve presidential data and metadata for 100 years, and uses all open APIs to do so
  • UK Rabo Bank which uses HCP to support compliance monitoring across a number of data feeds
  • US  Ground Support which uses Pentaho, HCP, HCP Content Intelligence and HCP Anywhere  to support geospatial search to ascertain boats at sea and what they are doing/shipping.

There’s a lot more to HCP and Hitachi Vantara than summarized here and I would suggest viewing the TFD videos and check out the link above for more information.


Want to learn more, see these other TFD bloggers posts:

Hitachi is reshaping its IT division by Andrew Mauro (@Andrew_Mauro)

Random access, DNA object storage system

Read a couple of articles this week Inching closer to a DNA-based file system in ArsTechnica and DNA storage gets random access in IEEE Spectrum. Both of these seem to be citing an article in Nature, Random access in large-scale DNA storage (paywall).

We’ve known for some time now that we can encode data into DNA strings (see my DNA as storage … and Genomic informatics takes off posts).

However, accessing DNA data has been sequential and reading and writing DNA data has been glacial. Researchers have started to attack the sequentiality of DNA data access. The prize, DNA can store 215PB of data in one gram and DNA data can conceivably last millions of years.

Researchers at Microsoft and the University of Washington have come up with a solution to the sequential access limitation. They have used polymerase chain reaction (PCR) primers as a unique identifier for files. They can construct a complementary PCR primer that can be used to extract just DNA segments that match this primer and amplify (replicate) all DNA sequences matching this primer tag that exist in the cell.

DNA data format

The researchers used a Reed-Solomon (R-S) erasure coding mechanism for data protection and encode the DNA data into many DNA strings, each with multiple (metadata) tags on them. One of tags is the PCR primer tag header, another tag indicates the position of the DNA data segment in the file and an end of data tag that is the same PCR primer tag.

The PCR primer tag was used as sort of a file address. They could configure a complementary PCR tag to match the primer tag of the file they wanted to access and then use the PCR process to replicate (amplify) only those DNA segments that matched the searched for primer tag.

Apparently the researchers chunk file data into a block of 150 base pairs. As there are 2 complementary base pairs, I assume one bit to one base pair mapping. As such, 150 base pairs or bits of data per segment means ~18 bytes of data per segment. Presumably this is to allow for more efficient/effective encoding of data into DNA strings.

DNA strings don’t work well with replicated sequences of base pairs, such as all zeros. So the researchers created a random sequence of 150 base pairs and XOR the file DNA data with this random sequence to determine the actual DNA sequence to use to encode the data. Reading the DNA data back they need to XOR the data segment with the random string again to reconstruct the actual file data segment.

Not clear how PCR replicated DNA segments are isolated and where they are originally decoded (with a read head). But presumably once you have thousands to millions of copies of a DNA segment,  it’s pretty straightforward to decode them.

Once decoded and XORed, they use the R-S erasure coding scheme to ensure that the all the DNA data segments represent the actual data that was encoded in them. They can then use the position of the DNA data segment tag to indicate how to put the file data back together again.

What’s missing?

I am assuming the cellular data storage system has multiple distinct cells of data, which are clustered together into some sort of organism.

Each cell in the cellular data storage system would hold unique file data and could be extracted and a file read out individually from the cell and then the cell could be placed back in the organism. Cells of data could be replicated within an organism or to other organisms.

To be a true storage system, I would think we need to add:

  • DNA data parity – inside each DNA data segment, every eighth base pair would be a parity for the eight preceding base pairs, used to indicate when a particular base pair in eight has mutated.
  • DNA data segment (block) and file checksums –  standard data checksums, used to verify and correct for double and triple base pair (bit) corruption in DNA data segments and in the whole file.
  • Cell directory – used to indicate the unique Cell ID of the cell, a file [name] to PCR primer tag mapping table, a version of DNA file metadata tags, a version of the DNA file XOR string, a DNA file data R-S version/level, the DNA file length or number of DNA data segments, the DNA data creation data time stamp, the DNA last access date-time stamp,and DNA data modification data-time stamp (these last two could be omited)
  • Organism directory – used to indicate unique organism ID, organism metadata version number, organism unique cell count,  unique cell ID to file list mapping, cell ID creation data-time stamp and cell ID replication count.

The problem with an organism cell-ID file list is that this could be quite long. It might be better to somehow indicate a range or list of ranges of PCR primer tags that are in the cell-ID. I can see other alternatives using a segmented organism directory or indirect organism cell to file lists b-tree, which could hold file name lists to cell-ID mapping.

It’s unclear whether DNA data storage should support a multi-level hierarchy, like file system  directories structures or a flat hierarchy like object storage data, which just has buckets of objects data. Considering the cellular structure of DNA data it appears to me more like buckets and the glacial access seems to be more useful to archive systems. So I would lean to a flat hierarchy and an object storage structure.

Is DNA data is WORM or modifiable? Given the effort required to encode and create DNA data segment storage, it would seem it’s more WORM like than modifiable storage.

How will the DNA data storage system persist or be kept alive, if that’s the right word for it. There must be some standard internal cell mechanisms to maintain its existence. Perhaps, the researchers have just inserted file data DNA into a standard cell as sort of junk DNA.

If this were the case, you’d almost want to create a separate, data  nucleus inside a cell, that would just hold file data and wouldn’t interfere with normal cellular operations.

But doesn’t the PCR primer tag approach lend itself better to a  key-value store data base?

Photo Credit(s): Cell structure National Cancer Institute

Prentice Hall textbook

Guide to Open VMS file applications

Unix Inodes CSE410

Key Value Databases, Wikipedia By ClescopOwn work, CC BY-SA 4.0, Link

A knowledge ark, the Arch project

Read an article last week on the Arch Mission Foundation project, which is a non-profit, organization that intends “to continuously preserve and disseminate human knowledge throughout time and space”.

The way I read this is they want to capture, preserve  and replicate all mankind’s knowledge onto (semi-)permanent media and store this information  at various locations around the globe and wherever we may go.

Interesting way to go about doing this. There are plenty of questions and considerations to capturing all of mankind’s knowledge.

Google’s way

 Google has electronically scanned every book in a number of library partners to help provide a searchable database of literature, check out the Google Books Library Project.

There’s over 40 library partners around the globe and the intent of the project was to digitize their collections. The library partners can then provide access to their digital copies. Google will provide full access to books in the public domain and will provide search results for all the rest, with pointers as to where the books can be found in libraries, purchased and otherwise obtained.

Google Books can be searched at Google Books. Last I heard they had digitized over 30M books from their library partners, which is pretty impressive since the Library of Congress has around 37M books. Google Books is starting to scan magazines as well.

Arch’s way

The intent is to create Arch’s (pronounced Ark’s) that can last billions of years. The organization is funding R&D into long lived storage technologies.

Some of these technologies include:

  • 5D laser optical data storage in quartz, I wrote about this before (see my 5D storage … post). Essentially, they are able to record two-tone scans of documents in transparent quartz that can last eons. Data is recorded in 5 dimensions, size of dot, polarity of dot  and 3 layers of dot locations through the media. 5D media lasts for 1000s of years.
  • Nickel ion-beam atomic scale storage, couldn’t find much on this online but we suppose this technology uses ion-beams to etch a nickel surface with nano-scale information.
  • Molecular storage on DNA molecules, I wrote about this before as well (see my DNA as storage… post) but there’s been plenty of research on this more recently. A group from Padua, IT  shows the way forward to use bacteria as a read/write head for DNA storage and there are claims that a gram of DNA could hold a ZB (zettabyte, 10**21 bytes) of data. For some reason Microsoft has been very active in researching this technology and plan to add it to Azure someday.
  • Durable space based flash drives, couldn’t find anything on this technology but assume this is some variant of NAND storage optimized for long duration.  Current NAND loses charge over time. Alternatively, this could be a version of other NVM storage, such as, MRAM, 3DX, ReRAM, Graphene Flash, and  Memristor all of which I have written about
  • Long duration DVD technology, this is sort of old school but there exists archive class WORM DVDs out and available on the market today, (see my post on M[illeniata]-Disc…).
  • Quantum information storage, current quantum memory lifetimes don’t much over exceed 180 seconds, but this is storage not memory. Couldn’t find much else on this, but it might be referring to permanent data storage with light.
M-Disc (c) 2011 Millenniata (from their website)
M-Disc (c) 2011 Millenniata (from their website)

They seem technology agnostic but want something that will last forever.

But what knowledge do they plan to store

In Arch’s FAQ they talk about open data sets like Wikipedia and the Internet Archive. But they have an interesting perspective on which knowledge to save. From an advanced future civilization perspective, they are probably not as interested in our science and technology but rather more interested in our history, art and culture.

They believe that science and technology should be roughly the same in every advanced civilization. But history, art and culture are going to be vastly different across different civilizations. As such, history, art and culture are uniquely valuable to some future version of ourselves or any other advanced scientific civilization.


Arch intends to have multiple libraries positioned on the Earth, on the Moon and Mars over time. And they are actively looking for donations and participation (see link above).

Although, I agree that culture, art and history will be most beneficial to any advanced civilization. But there’s always a small but distinct probability that we may not continue to exist as an advanced scientific civilization. In that case, I would think, science and technology would also be needed to boot strap civilization.

To the Wikipedia, I would add GitHub, probably Google Books, and PLOS as well as any other publicly available scientific or humanities journals that available.

And don’t get me started on what format to record the data with. Needless to say, out-dated formats are going to be a major concern for anything but a 2D scan of information after about ten years or so.

In any case, humanity and universanity needs something like this.

Photo Credit(s): The Arch Mission Foundation web page

Google Books Library search on Republic results

“Five dimensional glass disks …” from The Verge

M-disk web page