The Mac 30 years on

I have to admit it. I have been a Mac and Apple bigot since 1984. I saw the commercial for the Mac and just had to have one. I saw the Lisa, a Mac precursor at a conference in town and was very impressed.

At the time, we were using these green or orange screens at work connected to IBM mainframes running TSO or VM/CMS and we thought we were leading edge.

And then the Mac comes out with proportional fonts, graphics terminal screen, dot matrix printing that could print anything you could possibly draw, a mouse and a 3.5″ floppy.

Somehow my wife became convinced and bought our family’s first Mac for her accounting office. You could buy spreadsheet and a WYSIWIG Word processor software and run them all in 128KB. She ended up buying Mac accounting software and that’s what she used to run her office.

She upgraded over the years and got the 512K Mac but eventually when  she partnered with two other accountants she changed to a windows machines. And that’s when the Mac came home.

I used the Mac, spreadsheets and word processing for most of my home stuff and did some programming on it for odd jobs but mostly it just was used for home office stuff. We upgraded this over the years, eventually getting a PowerMac which had a base station with a separate CRT above it, but somehow this never felt like a Mac.

Then in 2002 we got the 15″ new iMac. This came as a half basketball base with a metal arm emerging out of the top of it, with a color LCD screen attached. I loved this Mac. We still have it but nobody’s using it anymore. I used it to edit my first family films using an early version of iMovie. It took hours to upload the video and hours more to edit it. But in the end, you had a movie on the iMac or on CD which you could watch with your family. You can’t imagine how empowered I felt.

Sometime later I left corporate America for the life of a industry analyst/consultant. I still used the 15″ iMac for the first year after I was out but ended up purchasing an alluminum Powerbook Mac laptop with my first check. This was faster than the 15″ iMac and had about the same size screen. At the time, I thought I would spend a lot out of time on the road.

But as it turns out, I didn’t spend that much time out of the office so when I generated enough revenue to start feeling more successful, I bought a iMac G5. The kids were using this until last year when I broke it. This had a bigger screen and was definitely a step up in power, storage and had a  Superdrive which allowed me to burn DVD-Rs for our family movies. When I wasn’t working I was editing family movies in half an hour or less (after import) and converting them to DVDs. Somewhere during this time, Garageband came out and I tried to record and edit a podcast, this took hours to complete and to export as a podcast.

I moved from the PowerBook laptop to a MacBook laptop. I don’t spend a lot of time out of the office but when I do I need a laptop to work on. A couple of years back I bought a MacBook Air and have been in love with it ever since. I just love the way it feels, light to the touch and doesn’t take up a lot of space. I bought a special laptop backpack for the old MacBook but it’s way overkill for the Air. Yes, it’s not that powerful, has less storage and  has the smaller screen (11″) but in a way it’s more than enough to live with on long vacations or out of the office

Sometime along the way I updated to my desktop to the aluminum iMac. It had a bigger screen, more storage and was much faster. Now movie editing was a snap. I used this workhorse for four years before finally getting my latest generation iMac with the biggest screen available and faster than I could ever need (he says now). Today, I edit GarageBand podcasts in a little over 30 minutes and it’s not that hard to do anymore.

Although, these days Windows has as much graphic ability as the Mac, what really made a difference for me and my family is the ease of use, multimedia support and the iLife software (iMovie, iDVD, iPhoto, iWeb, & GarageBand) over the years and yes, even iTunes. Apple’s Mac OS software has evolved over the years but still seems to be the easiest desktop to use, bar none.

Let’s hope the Mac keeps going for another 30 years.

Photo Credits:  Original 128k Mac Manual by ColeCamp

my original Macintosh by Blake Patterson

Brand new iMac, February 16, 2002 by Dennis Brekke

MacBook Air by nuzine.eu

iMac Late 2012 by Cellura Technology

HDS Influencer Summit wrap up

[Sorry for the length, it was a long day] There was an awful lot of information suppied today. The morning sessions were all open but most of the afternoon was under NDA.

Jack Domme,  HDS CEO started the morning off talking about the growth in HDS market share.  Another 20% y/y growth in revenue for HDS.  They seem to be hitting the right markets with the right products.  They have found a lot of success in emerging markets in Latin America, Africa and Asia.  As part of this thrust into emerging markets HDS is opening up a manufacturing facility in Brazil and a Sales/Solution center in Columbia.

Jack spent time outlining the infrastructure cloud to content cloud to information cloud transition that they believe is coming in the IT environment of the future.   In addition, there has been even greater alignment within Hitachi Ltd and consolidation of engineering teams to tackle new converged infrastructure needs.

Randy DeMont, EVP and GM Global Sales, Services and Support got up next and talked about their success with the channel. About 50% of their revenue now comes from indirect sources. They are focusing some of their efforts to try to attract global system integrators that are key purveyors to Global 500 companies and their business transformation efforts.

Randy talked at length about some of their recent service offerings including managed storage services. As customers begin to trust HDS with their storage they are start considering moving their whole data center to HDS. Randy said this was a $1B opportunity for HDS and the only thing holding them back is finding the right people with the skills necessary to provide this service.

Randy also mentioned that over the last 3-4 years HDS has gained 200-300 new clients a quarter, which is introducing a lot of new customers to HDS technology.

Brian Householder, EVP, WW Marketing, Business Development and Partners got up next and talked about how HDS has been delivering on their strategic vision for the last decade or so.    With HUS VM, HDS has moved storage virtualization down market, into a rack mounted 5U storage subsystem.

Brian mentioned that 70% of their customers are now storage virtualized (meaning that they have external storage managed by VSP, HUS VM or prior versions).  This is phenomenal seeing as how only a couple of years back this number was closer to 25%.  Later at lunch I probed as to what HDS thought was the reason for this rapid adoption, but the only explanation was the standard S-curve adoption rate for new technologies.

Brian talked about some big data applications where HDS and Hitachi Ltd, business units collaborate to provide business solutions. He mentioned the London Summer Olympics sensor analytics, medical imaging analytics, and heavy construction equipment analytics. Another example he mentioned was financial analysis firms usingsatellite images of retail parking lots to predict retail revenue growth or loss.  HDS’s big data strategy seems to be vertically focused building on the strength in Hitachi Ltd’s portfolio of technologies. This was the subject of a post-lunch discussion between John Webster of Evaluator group, myself and Brian.

Brian talked about their storage economics professional services engagement. HDS has done over 1200 storage economics engagements and  have written books on the topic as well as have iPad apps to support it.  In addition, Brian mentioned that in a late The Info Pro survey, HDS was rated number 1 in value for storage products.

Brian talked some about HDS strategic planning frameworks one of which was an approach to identify investments to maximize share of IT spend across various market segments.  Since 2003 when HDS was 80% hardware revenue company to today where they are over 50% Software and Services revenue they seem to have broaden their portfolio extensively.

John Mansfield, EVP Global Solutions Strategy and Development and Sean Moser, VP Software Platforms Product Management spoke next and talked about HCP and HNAS integration over time. It was just 13 months ago that HDS acquired BlueArc and today they have integrated BlueArc technology into HUS VM and HUS storage systems (it was already the guts of HNAS).

They also talked about the success HDS is having with HCP their content platform. One bank they are working with plans to have 80% of their data in an HCP object store.

In addition there was a lot of discussion on UCP Pro and UCP Select, HDS’s converged server, storage and networking systems for VMware environments. With UCP Pro the whole package is ordered as a single SKU. In contrast, with UCP Select partners can order different components and put it together themselves.  HDS had a demo of their UCP Pro orchestration software under VMware vSphere 5.1 vCenter that allowed VMware admins to completely provision, manage and monitor servers, storage and networking for their converged infrastructure.

They also talked about their new Hitachi Accelerated Flash storage which is an implementation of a Flash JBOD using MLC NAND but with extensive Hitachi/HDS intellectual property. Together with VSP microcode changes, the new flash JBOD provides great performance (1 Million IOPS) in a standard rack.  The technology was developed specifically by Hitachi for HDS storage systems.

Mike Walkey SVP Global Partners and Alliances got up next and talked about their vertical oriented channel strategy.  HDS is looking for channel partners perspective the questions that can expand their reach to new markets, providing services along with the equipment and that can make a difference to these markets.  They have been spending more time and money on vertical shows such as VMworld, SAPhire, etc. rather than horizontal storage shows (such as SNW). Mike mentioned key high level partnerships with Microsoft, VMware, Oracle, and SAP as helping to drive solutions into these markets.

Hicham Abhessamad, SVP, Global Services got up next and talked about the level of excellence available from HDS services.  He indicated that professional services grew by 34% y/y while managed services grew 114% y/y.  He related a McKinsey study that showed that IT budget priorities will change over the next couple of years away from pure infrastructure to more analytics and collaboration.  Hicham talked about a couple of large installations of HDS storage and what they are doing with it.

There were a few sessions of one on ones with HDS executives and couple of other speakers later in the day mainly on NDA topics.  That’s about all I took notes on.  I was losing steam toward the end of the day.

Comments?

Roads to R&D success – part 2

This is the second part of a multi-part post.  In part one (found here) we spent some time going over some prime examples of corporations that generated outsize success from their R&D activities, highlighting AT&T with Bell Labs, IBM with IBM Research, and Apple.

I see two viable models for outsized organic R&D success:

  • One is based on a visionary organizational structure which creates an independent R&D lab.  IBM has IBM Research, AT&T had Bell Labs, other major companies have their research entities.  These typically have independent funding not tied to business projects, broadly defined research objectives, and little to no direct business accountability.  Such organizations can pursue basic research and/or advanced technology wherever it may lead.
  • The other is based on visionary leadership, where a corporation identifies a future need, turns completely to focus on the new market, devotes whatever resources it needs and does a complete forced march towards getting a product out the door.  While these projects sometimes have stage gates, more often than not, they just tell the project what needs to be done next, and where resources are coming from.

The funny thing is that both approaches have changed the world.  Visionary leadership typically generates more profit in a short time period. But visionary organizations often outlast any one person and in the long run may generate significant corporate profits.

The challenges of Visionary Leadership

Visionary leadership balances broad technological insight with design aesthetic that includes a deep understanding of what’s possible within a corporate environment. Combine all that with an understanding of what’s needed in some market and you have a combination reconstructs industries.

Visionary leadership is hard to find.  Leaders like Bill Hewlett, Akio Morita and Bill Gates seem to come out of nowhere, dramatically transform multiple industries and then fade away.  Their corporations don’t ever do as well after such leaders are gone.

Often visionary leaders come up out of the technical ranks.  This gives them the broad technical knowledge needed to identify product opportunities when they occur.   But, this technological ability also helps them to push development teams beyond what they thought feasible.  Also, the broad technical underpinnings gives them an understanding of how different pieces of technology can come together into a system needed by new markets.

Design aesthetic is harder to nail down.  In my view, it’s intrinsic to understanding what a market needs and where a market is going.   Perhaps this should be better understood as marketing foresight.  Maybe it’s just the ability to foresee how a potential product fits into a market.   At some deep level, this is essence of design excellence in my mind.

The other aspect of visionary leaders is that they can do it all, from development to marketing to sales to finance.  But what sets them apart is that they integrate all these disciplines into a single or perhaps pair of individuals.  Equally important, they can recognize excellence in others.  As such, when failures occur, visionary leader’s can decipher the difference between bad luck and poor performance and act accordingly.

Finally, most visionary leaders are deeply immersed in the markets they serve or are about to transform.  They understand what’s happening, what’s needed and where it could potentially go if it just apply the right technologies to it.

When you combine all these characteristics in one or a pair of individuals, with corporate resources behind them, they move markets.

The challenges of Visionary Organizations

On the other hand, visionary organizations that create independent research labs can live forever.  As long as they continue to produce viable IP.   Corporate research labs must balance an ongoing commitment to advance basic research against a need to move a corporation’s technology forward.

That’s not to say that the technology they work on doesn’t have business applications.  In some cases, they create entire new lines of businesses, such as Watson from IBM Research.   However, probably most research may never reach corporate products, Nonetheless research labs always generate copious IP which can often be licensed and may represent a significant revenue stream in its own right.

The trick for any independent research organization is to balance the pursuit of basic science within broad corporate interests, recognizing research with potential product applications, and guiding that research into technology development.  IBM seems to have turned their research arm around by rotating some of their young scientists out into the field to see what business is trying to accomplish.  When they return to their labs, often their research takes on some of the problems they noticed during their field experience.

How much to fund such endeavors is another critical factor.  There seems to be a size effect. I have noticed small research arms, less than 20 people that seem to flounder going after the trend of the moment which fail to generate any useful IP.

In comparison, IBM research is well funded (~6% of 2010 corporate revenue) with over 3000 researchers (out of total employee population of 400K) in 8 labs.  The one lab highlighted in the article above (Zurich) had 350 researchers, covering 5 focus areas, or ~70 researchers per area.

Most research labs augment their activities by performing joint research projects with university researchers and other collaborators. This can have the effect of multiplying research endeavors but often it will take some funding to accomplish and get off the ground.

Research labs often lose their way and seem to spend significant funds on less rewarding activities.  But by balancing basic science with corporate interests, they can become very valuable to corporations.

~~~~

In part 3 of this series we discuss the advantages and disadvantages of startup acquisitions and how they can help and hinder a company’s R&D effectiveness.

Image: IBM System/360 by Marcin Wichary

Roads to R&D success – part 1

Large corporations have a serious problem.  We have talked about this before (see Is M&A the only way to grow, R&D Effectiveness, and Technology innovation).

It’s been brewing for years, some say decades. Successful company’s generate lot’s of cash but investing in current lines of business seldom propels corporations into new markets.

So what can they do?

  • Buy startups – yes, doing so can move corporations into new markets, obtain new technology and perhaps, even a functioning product.  However, they often invest in  unproven technology, asymmetrical organizations and mistaken ROIs.
  • Invest internally – yes, they can certainly start new projects, give it resources and let it run it’s course.  However, they burden most internal project teams with higher overhead, functioning perfection, and loftier justification.

Another approach trumpeted by Cisco and others in recent years is spin-out/spin-in which is probably a little of both.   Here a company can provide funding, developers, and even IP to an entity that is spun out of a company.  The spin-out is dedicated to producing some product in a designated new market and then if goals are met, can be spun back into the company at a high, but fair price.

The most recent example is Cisco’s spin-in Insieme that is going after SDN and Open Flow networking but their prior success with Andiamo and it’s FC SAN technology is another one.  GE, Intel and others have also tried this approach with somewhat less success.

Corporate R&D today

Most company’s have engineering departments with a tried and true project management/development team approach that has stage gates, generates  requirements, architects systems, designs components and finally, develops products.   A staid, steady project cycle which nevertheless is fraught with traps, risks and detours.  These sorts of projects seem only able to enhance current product lines and move products forward to compete in their current markets.

But these projects never seem transformative.  They don’t take a company from 25% to 75% market share or triple corporate revenues in a decade.  They typically fight a rear-guard action against a flotilla of competitors all going after the same market, at worst trying not to lose market share and at best gain modest market share, where possible.

How corporation’s succeed at internal R&D

But there are a few different models that have generated outsized internal R&D success in the past.  These generally fall into a few typical patterns.  We discuss two below.

One depends on visionary leadership and the other on visionary organizations.  For example, let’s look at IBM, AT&T’s Bell Labs and Apple.

IBM R&D in the past and today

First, examine IBM whose CEO, Thomas J. Watson Jr. bet the company on System 360 from 1959 to 1964.  That endeavor cost them ~$5B at the time but eventually catapulted them from one of many computer companies to almost a mainframe monopoly for two decades years.  They created an innovative microcoded, CISC architecture, that spanned a family of system models, and standardized I/O with common peripherals.  From that point on, IBM was able to dominate corporate data processing until the mid 1980’s.  IBM has arguably lost and found their way a couple of times since then.

However as another approach to innovation in 1945, IBM Research was founded.  Today IBM Research is a well funded, independent research lab that generates significant IP in super computing, artificial intelligence and semiconductor technology.

Nonetheless, during the decades since 1945, IBM Research struggled for corporate relevance.  Occasionally coming out with significant IT technology like relational databases, thin film recording heads, and RISC architectures. But arguably such advances were probably put to better use outside IBM.  Recently, this seems to have changed and we now see significant technology moving IBM into new markets from IBM Research.

AT&T and Bell Labs

Bell  Labs is probably the most prolific research organization the world has seen.  They invented statistical process control, the transistor, information theory and probably another dozen or so Nobel prize winning ideas. Early on most of their technology made it into the Bell system but later on they lost their way.

Their parent company AT&T, had a monopoly on long distance phone service, switching equipment and other key technologies in USA’s phone system for much of the twentieth century.  During most of that time Bell Labs was well funded and charged with advancing Bell system technology.

Nonetheless, despite Bell Labs obvious technological success, in the end they mostly served to preserve and enhance the phone system rather than disrupt it.  Some of this was due to justice department decrees limiting AT&T endeavors. But in any case, like IBM research much of Bell Labs technology was taken up by others and transformed many markets.

Apple yesterday and today

Then there’s Apple. They have almost single handedly created three separate market’s, the personal computer, the personal music player and the tablet computer markets while radically transforming the smart phone market as well.   In every case there were sometimes, significant precursors to the technology, but Apple was the one to catalyze, popularize and capitalize on each one.

Apple II was arguably the first personal computer but the Macintosh redefined the paradigm.  The Mac wasn’t the great success it could have been, mostly due to management changes that moved Jobs out of Apple.  But it’s potential forced major competitors to change their products substantially.

When Jobs returned, he re-invigorated the Mac.  After that, he went about re-inventing the music player, the smart phone and tablet computing.

Could Apple have done all these without Jobs, I doubt it.  Could a startup have taken any of these on, perhaps but I think it unlikely.

The iPod depended on music industry contracts, back office and desktop software and deep technological acumen.  None of these were exclusive to Apple nor big corporations.  Nevertheless, Jobs saw the way forward first, put the effort into making them happen and Apple reaped the substantial rewards that ensued.

~~~~

In part 2 of the Road to R&D success we propose some options for how to turn corporate R&D into the serious profit generator it can become.  Stay tuned

To be continued …

Image: Replica of first transistor from Wikipedia

 

How has IBM research changed?

20111207-204420.jpg
IBM Neuromorphic Chip (from Wired story)

What does Watson, Neuromorphic chips and race track memory have in common. They have all emerged out of IBM research labs.

I have been wondering for some time now how it is that a company known for it’s cutting edge research but lack of product breakthrough has transformed itself into an innovation machine.

There has been a sea change in the research at IBM that is behind the recent productization of tecnology.

Talking the past couple of days with various IBMers at STGs Smarter Computing Forum, I have formulate a preliminary hypothesis.

At first I heard that there was a change in the way research is reviewed for product potential. Nowadays, it almost takes a business case for research projects to be approved and funded. And the business case needs to contain a plan as to how it will eventually reach profitability for any project.

In the past it was often said that IBM invented a lot of technology but productized only a little of it. Much of their technology would emerge in other peoples products and IBM would not recieve anything for their efforts (other than some belated recognition for their research contribution).

Nowadays, its more likely that research not productized by IBM is at least licensed from them after they have patented the crucial technologies that underpin the advance. But it’s just as likely if it has something to do with IT, the project will end up as a product.

One executive at STG sees three phases to IBM research spanning the last 50 years or so.

Phase I The ivory tower:

IBM research during the Ivory Tower Era looked a lot like research universities but without the tenure of true professorships. Much of the research of this era was in materials and pure mathematics.

I suppose one example of this period was Mandlebrot and fractals. It probably had a lot of applications but little of them ended up in IBM products and mostly it advanced the theory and practice of pure mathematics/systems science.

Such research had little to do with the problems of IT or IBM’s customers. The fact that it created pretty pictures and a way of seeing nature in a different light was an advance to mankind but it didn’t have much if any of an impact to IBM’s bottom line.

Phase II Joint project teams

In IBM research’s phase II, the decision process on which research to move forward on now had people from not just IBM research but also product division people. At least now there could be a discussion across IBM’s various divisions on how the technology could enhance customer outcomes. I am certain profitability wasn’t often discussed but at least it was no longer purposefully ignored.

I suppose over time these discussions became more grounded in fact and business cases rather than just the belief in the value of the research for research sake. Technological roadmaps and projects were now looked at from how well they could impact customer outcomes and how such technology enabled new products and solutions to come to market.

Phase III Researchers and product people intermingle

The final step in IBM transformation of research involved the human element. People started moving around.

Researchers were assigned to the field and to product groups and product people were brought into the research organization. By doing this, ideas could cross fertilize, applications could be envisioned and the last finishing touches needed by new technology could be envisioned, funded and implemented. This probably led to the most productive transition of researchers into product developers.

On the flip side when researchers returned back from their multi-year product/field assignments they brought a new found appreciation of problems encountered in the real world. That combined with their in depth understanding of where technology could go helped show the path that could take research projects into new more fruitful (at least to IBM customers) arenas. This movement of people provided the final piece in grounding research in areas that could solve customer problems.

In the end, many research projects at IBM may fail but if they succeed they have the potential to make change IT as we know it.

I heard today that there were 700 to 800 projects in IBM research today if any of them have the potential we see in the products shown today like Watson in Healthcare and Neuromorphic chips, exciting times are ahead.

One day with HDS

HDS CEO Jack Domme shares the company’s vision and strategy with Influencer Summit attendees #HDSday by HDScorp
HDS CEO Jack Domme shares the company’s vision and strategy with Influencer Summit attendees #HDSday by HDScorp

Attended #HDSday yesterday in San Jose.  Listened to what seemed like the majority of the executive team. The festivities were MCed by Asim Zaheer, VP Corp and Product Marketing, a long time friend and employee, that came to HDS with the acquisition of Archivas five or so years ago.   Some highlights of the day’s sessions are included below.

The first presenter was Jack Domme, HDS CEO, and his message was that there is a new, more aggressive HDS, focused on executing and growing the business.

Jack said there will be almost a half a ZB by 2015 and ~80% of that will be unstructured data.  HDS firmly believes that much of this growing body of  data today lives in silos, locked into application environments and can’t become truly information until it can be liberated from this box.  Getting information out of the unstructured data is one of the key problems facing the IT industry.

To that end, Jack talked about the three clouds appearing on the horizon:

  • infrastructure cloud – cloud as we know and love it today where infrastructure services can be paid for on a per use basis, where data and applications move seemlessly across various infrastructural boundaries.
  • content cloud – this is somewhat new but here we take on the governance, analytics and management of the millions to billions pieces of content using the infrastructure cloud as a basic service.
  • information cloud – the end game, where any and all data streams can be analyzed in real time to provide information and insight to the business.

Jack mentioned the example of when Japan had their earthquake earlier this year they automatically stopped all the trains operating in the country to prevent further injury and accidents, until they could assess the extent of track damage.  Now this was a specialized example in a narrow vertical but the idea is that the information cloud does that sort of real-time analysis of data streaming in all the time.

For much of the rest of the day the executive team filled out the details that surrounded Jack’s talk.

For example Randy DeMont, Executive VP & GM Global Sales, Services and Support talked about the new, more focused sales team. On that has moved to concentrate on better opportunities and expanded to take on new verticals/new emerging markets.

Then Brian Householder, SVP WW Marketing and Business Development got up and talked about some of the key drivers to their growth:

  • Current economic climate has everyone doing more with less.  Hitachi VSP and storage virtualization is a unique position to be able to obtain more value out of current assets, not a rip and replace strategy.  With VSP one layers better management on top of your current infrastructure, that helps get more done with the same equipment.
  • Focus on the channel and verticals are starting to pay off.  More than 50% of HDS revenues now come from indirect channels.  Also, healthcare and life sciences are starting to emerge as a crucial vertical for HDS.
  • Scaleability of their storage solutions is significant. Used to be a PB was a good sized data center but these days we are starting to talk about multiple PBs and even much more.  I think earlier Jack mentioned that in the next couple of years HDS will see their first 1EB customer.

Mark Mike Gustafson,  SVP & GM NAS (former CEO BlueArc) got up and talked about the long and significant partnership between the two companies regarding their HNAS product.  He mentioned that ~30% of BlueArc’s revenue came from HDS.  He also talked about some of the verticals that BlueArc had done well in such as eDiscovery and Media and Entertainment.  Now these verticals will become new focus areas for HDS storage as well.

John Mansfield, SVP Global Solutions Strategy and Developmentcame up and talked about the successes they have had in the product arena.  Apparently they have over 2000 VSPs intsalled, (announced just a year ago), and over 50% of the new systems are going in with virtualization. When asked later what has led to the acceleration in virtualization adoption, the consensus view was that server virtualization and in general, doing more with less (storage efficiency) were driving increased use of this capability.

Hicham Abdessamad, SVP, Global Services got up and talked about what has been happening in the services end of the business.  Apparently there has been a serious shift in HDS services revenue stream from break fix over to professional services (PS).  Such service offerings now include taking over customer data center infrastructure and leasing it back to the customer at a monthly fee.   Hicham re-iterated that ~68% of all IT initiatives fail, while 44% of those that succeed are completed over time and/or over budget.  HDS is providing professional services to help turn this around.  His main problem is finding experienced personnel to help deliver these services.

After this there was a Q&A panel of John Mansfield’s team, Roberto Bassilio, VP Storage Platforms and Product Management, Sean Moser,  VP Software Products, and Scan Putegnat, VP File and Content Services, CME.  There were a number of questions one of which was on the floods in Thailand and their impact on HDS’s business.

Apparently, the flood problems are causing supply disruptions in the consumer end of the drive market and are not having serious repercussions for their enterprise customers. But they did mention that they were nudging customers to purchase the right form factor (LFF?) disk drives while the supply problems work themselves out.

Also, there was some indication that HDS would be going after more SSD and/or NAND flash capabilities similar to other major vendors in their space. But there was no clarification of when or exactly what they would be doing.

After lunch the GMs of all the Geographic regions around the globe got up and talked about how they were doing in their particular arena.

  • Jeff Henry, SVP &GM Americas talked about their success in the F500 and some of the emerging markets in Latin America.  In fact, they have been so successful in Brazil, they had to split the country into two regions.
  • Niels Svenningsen, SVP&GM EMAE talked about the emerging markets in his area of the globe, primarily eastern Europe, Russia and Africa. He mentioned that many believe Africa will be the next area to take off like Asia did in the last couple of decades of last century.  Apparently there are a Billion people in Africa today.
  • Kevin Eggleston, SVP&GM APAC, talked about the high rate of server and storage virtualization, the explosive growth and heavy adoption of Cloud pay as you go services. His major growth areas were India and China.

The rest of the afternoon was NDA presentations on future roadmap items.

—-

All in all a good overview of HDS’s business over the past couple of quarters and their vision for tomorrow.  It was a long day and there was probably more than I could absorb in the time we had together.

Comments?

 

1 on 1 auctions vs. person years of A/R time

1918 Farm Auction by dok1 (cc) (from Flickr)
1918 Farm Auction by dok1 (cc) (from Flickr)

I have had this conversation before (and have blogged about it with Crowdsourcing business analyst …) where there is lots of time and effort (person years?) devoted to scheduling one-on-one meetings between analyst firms and corporate executives. I may be repeating my earlier post but the problem persists and I see an obvious easier way to solve this.

Auction off 1 on 1 time slots

By doing this the company puts the burden on the analyst community by giving every  firm some amount of “analyst buck”s (A$) and then auction off executive meeting slots. In this way the crowd of analysts would determine who best to meet with whom (putting crowdsourcing to work).

Consider today’s solution:

  • Send out a list of topics to be discussed at the meeting,
  • Have the analyst firm select their top 3 or 5 topics, and
  • Have analyst relation’s sift the requests and executive availability to schedule the meetings.

For analyst events with 100s of analyst firms, 20 or more executives, and 10 or more time slots, the scheduling activity can become quite complex and time consuming.

I understand a corporation’s need to make the most effective use of analysts and executive management time, but what better way to make this determination than to let the (analyst) market decide.

How an executive 1 on 1 auction could work

The way I see it is to hold some sort of dutch or japanese auction (see wikipedia auction) where all the analyst firm representatives attended a webex session and bid for 1-1 time slots with various executives. In this fashion the company could have the whole schedule laid out in a single day with the only effort involved in identifying executives, time slots and supplying A$s to analyst firms.

It doesn’t even need to be that sophisticated and potentially could be done on eBay with real money supplied by the company (useable only for bidding in executive time slot auctions) and donated to charity when the process is finished.  There are any number of ways to do this on the quick and cheap.  However, using eBay may be a bit too public but doing this over a conference call with webex would probably suffice just as well and could be totally private.

Of course with this approach, the company may find that their are some executives that are in higher demand than others.  If such is the case, perhaps a secondary auction could be supplied with more time slots. Ditto for executives that have time slots that are not in demand – they could be released from providing time for 1 on 1 meetings.

In my prior post I mentioned the option that maybe the corporation might want more control over who meets who. In that case allocating some A$s to the corporate executives (or A/R as their proxy) to use to augment analyst firm bids might do the trick. Of course providing those firms more A$s would also give them preferential access. Obviously, this wouldn’t provide as much absolute control as spending person years of effort doing 1 on 1 scheduling but it would provide a quick and relatively easy solution to the problem from both the analyst firm as well as analyst relations.

But how much to grant to each analyst firm?

The critical question is the amount of A$’s to provide each firm.  This might take some thought but there is an easy solution. Just use last years analyst spend as the amount of A$s to provide the firm.  Another option is to provide some base level of analyst bucks to any firm invited to attend and then add more for the prior year spend.

Possibly, a less appealing approach (to me at least) is to give each analyst firm an amount proportional to their annual revenue regardless of company spending with the firm.  But perhaps some combination of the above, say

1/3 base amount for any invitee + 1/3 proportional to annual spend +1/3 proportional to annual firm revenue = A$s

would work.

In my previous post I suggested so many A$s per analyst. As such, bigger firms with more analysts would get more than firms with less analysts. But I feel the formula described above makes more sense to me.

Information provided to facilitate the 1 on 1’s auction

In order for the auction to work well, analyst firms would need to know more information about the executive whose time is being auctioned off.  But aside from that just a schedule of the time slots available would allow the auction to work. On the other hand, some idea of the company’s org chart and where the executive fit in would be very useful to facilitate the auction.

—-

That’s it, pretty simple, set up a conference call, send out executive information and org chart, allocate analyst bucks and let the bidding begin.

Auctioning off Lot-132: 30 minutes of Ray Lucchesi’s time …, let the bidding begin.

Comments?

Technology innovation

Newton & iPad by mac_ivan (cc) (from Flickr)
Newton & iPad by mac_ivan (cc) (from Flickr)

A recent post by Mark Lewis on innovation in large companies (see Episode 105: Innovation – a process problem?) brought to mind some ideas that have been intriguing me for quite awhile now.  While Mark’s post is only the start of his discussion on the management of innovation, I think the problem goes far beyond what he has outlined there.

Outside of Apple and a few select others, there doesn’t appear to be many large corporate organization that continually succeed at technology innovation.  On the other hand there are a number of large organizations which spend $Millions, if not $Billions on R&D with at best, mediocre return on such investments.

Why do startups innovate so well and corporations do so poorly.

  • Most startup cost is sweat equity and not money, at least until business success is more assured.  Well run companies have a gate review process which provide more resources as new ideas mature over time, but the cost of “fully burdened” resources applied to any project is much higher and more monetary right from the start.  As such, corporate innovation costs, for the exact same product/project, are higher at every stage in the process, hurting ROI.
  • Most successful startups engage with customers very early in the development of a product. Alpha testing is the life blood of technical startups. Find a customer that has (hopefully, a hard) problem you want to solve and take small, incremental steps to solve it, giving the customer everything you have, the moment you have it, so they can determine if it helped and where to go next.  If their problem is shared by enough other customers you have a business.  Large companies cannot readily perform alpha tests or in some cases even beta tests in real customer environments.  Falling down and taking the many missteps that alpha testing would require might have significant brand repercussions.  So large companies end up funding test labs to do this activity.  Naturally, such testing increases the real and virtual costs of corporate innovation projects versus a startup with alpha testing.  Also, any “simulated testing” may be far removed from real customer experience, often leading corporate projects down unproductive development paths, increasing development time and costs.
  • Many startups fail, hopefully before monetary investment has been significant. Large corporate innovation activities also fail often but typically much later in the development process and only after encountering higher real and virtual monetary costs.  Thus, the motivation for continuing innovation in major corporations typically diminishes after every failure, as does the ROI on R&D in general.  On the other hand, startup failures, as they generally cost little actual money, typically induce participants to re-examine customer concerns to better target future innovations.  Such failures often lead to an even higher motivation in startup personnel to successfully innovate.

There are probably many other problems with innovation in large corporate organizations but these seem most significant to me.  Solutions to such issues within large corporations are not difficult to imagine, but the cultural changes that may be needed to go along with such solutions may represent the truly harder problem to solve.

Comments?