Magnonics for configurable electronics

Read an article today in ScienceDaily on [a] New way to write magnetic info … that discusses research done at Imperial College Of London that used a magnetic force microscope (small magnetic probe) to write magnetic fields onto a dense array of nanowires.

Frustrated metamaterials needed

The original research is written up in a Nature article Realization of ground state in artificial kagome spin ice via topological defect driven magnetic writing  (paywall). Unclear what that means but the paper abstract discusses geometrically frustrated magnetic metamaterials.  This is where the physical size or geometrical properties of the materials at the nanometer scale restricts or limits the magnetic states that material can exhibit.

Magnetic storage deals with magnetic material but there are a number of unique interactions of magnetic material when in close (nm) proximity to one another and the way nanowire geometrically frustrated magnetic metamaterials can be magnetized to different magnetic moments which can be exploited for other uses.  These interactions and magnetic moments can be combined to provide electronic circuitry and data storage.

I believe the research provides a proof point that such materials can be written, in close proximity to one another using a magnetic force microscope.

Why it’s important

The key is the potential to create  magnonic circuitry based on the pattern of moments writen into an array of nanowires. In doing so, one can fabricate any electrical circuit. It’s almost like photolithography but without fabs, chemicals, or laser scanners.

At first I thought this could be a denser storage device, but the potential is much greater if electronic circuitry could be constructed without having to fabricate semiconductors. It would seem ideal for testing out circuitry before manufacturing. And ultimately if it could be scaled up, the manufacture/fabrication of electronic circuitry itself could be done using these techniques.

Speed, endurance, write limits?

There was no information in the public article about the speed of writing the “frustrated magnetic metamaterials”. But an atomic force microscope can scan 150×150 micrometers in several minutes. If we assume that a typical chip size today is 150×150 mm, then this would take 1E6 times several minutes, or ~2K days. With multiple scanning force microscopes operating concurrently we could cut this down by a factor of 10 or 100 and maybe someday 1000. 2 days to write any electronic circuit on the order of todays 23nm devices with nanowires and magnetic force microscopes would be a significant advance

Also there was no mention of endurance, write limits or other characteristics we have learned to love with Flash storage. But the assumption is that it can be written multiple times and that the pattern stays around for some amount of time.

How magnetics generate electronic circuits

Neither Wikipedia page, the public article or the paywall articles’ abstract describes how Magnonics can supply electronic circuitry. However both the abstract and the public article discuss applications for this new technology in hardware based neural networks using arrays of densely packed nanowires.

Presumably, by writing different magnetic patterns in these nanowire metamaterials, such patterns can be used to simulate hardware connected neurons. This means that the magnetic information can be overwritten because it can be trained. Also, such magnetic circuits can be constructed to: a) can create different path for electrons to flow through the material; b) can restrict or enhance this electronic flow, and c) can integrate across a number of inputs and determine how electronic flow will proceed from a simulated neuron.

If magnonics can do all that,  it’s very similar to electronic gates today in CPU, GPUs and other electronic circuitry. Maybe it cannot simulate every gate or electronic device that’s found in todays CPUs but it’s a step in the right direction. And magnonics is relatively new. Silicon transistors are over 70 years old and the integrated circuit is almost 60 years old. So in time, magnonics could very well become the next generation of chip technology.

Writing speed is a problem. Maybe if they spun the nanowire array around the magnetic force microscope…

Comments?

Photo Credits:  Real space observation of emergent magnetic monopoles … Nature article

Realization of ground state in artificial kagome spin ice via topological defect driven magnetic writing, Nature article

 

Crowdresearch, crowdsourced academic research

Read an article in Stanford Research, Crowdsourced research gives experience to global participants that discussed an activity in Stanford and other top tier research institutions to try to get global participation in academic research. The process is discussed more fully in a scientific paper (PDF here) by researchers from Stanford, MIT Media Lab, Cornell Tech and UC Santa Cruz.

They chose three projects:

  • A HCI (human computer interaction) project to design, engineer and build a new paid crowd sourcing marketplace (like Amazon’s Mechanical Turk).
  • A visual image recognition project to improve on current visual classification techniques/algorithms.
  • A data science project to design and build the world’s largest wisdom of the crowds experiment.

Why crowdsource academic research?

The intent of crowdsourced research is to provide top tier academic research experience to persons which have no access to top research organizations.

Participating universities obtain more technically diverse researchers, larger research teams, larger research projects, and a geographically dispersed research community.

Collaborators win valuable academic research experience, research community contacts, and potential authorship of research papers as well as potential recommendation letters (for future work or academic placement),

How does crowdresearch work?

It’s almost an open source and agile development applied to academic research. The work week starts with the principal investigator (PI) and research assistants (RAs) going over last week’s milestone deliveries to see which to pursue further next week. The crowdresearch uses a REDDIT like posting and up/down voting to determine which milestone deliverables are most important. The PI and RAs review this prioritized list to select a few to continue to investigate over the next week.

The PI holds an hour long video conference (using Google Hangouts On Air Youtube live stream service). On the conference call all collaborators can view the stream but only a select few are on camera. The PI and the researchers responsible for the important milestone research of the past week discuss their findings and the rest of the collaborators on the team can participate over Slack. The video conference is archived and available  to be watched offline.

At the end of the meeting, the PI identifies next weeks milestones and potentially directly responsible investigators (DRIs) to work on them.

The DRIs and other collaborators choose how to apportion the work for the next week and work commences. Collaboration can be fostered and monitored via Slack and if necessary, more Google live stream meetings.

If collaborators need help understanding some technology, technique, or too, the PI, RAs or DRIs can provide a mini video course on the topic or can point to other information used to get the researchers up to speed. Collaborators can ask questions and receive answers through Slack.

When it’s time to write the paper, they used Google Docs with change tracking to manage the writing process.

The team also maintained a Wiki on the overall project to help new and current members get up to speed on what’s going on. The Wiki would also list the week’s milestones, video archives, project history/information, milestone deliverables, etc.

At the end of the week, researchers and DRIs would supply a mini post to describe their work and link to their milestone deliverables so that everyone could review their results.

Who gets credit for crowdresearch?

Each week, everyone on the project is allocated 100 credits and apportions these credits to other participants the weeks activities. The credits are  used to drive a page-rank credit assignment algorithm to determine an aggregate credit score for each researcher on the project.

Check out the paper linked above for more information on the credit algorithm. They tried to defeat (credit) link rings and other obvious approaches to stealing credit.

At the end of the project, the PI, DRIs and RAs determine a credit clip level for paper authorship. Paper authors are listed in credit order and the remaining, non-author collaborators are listed in an acknowledgements section of the paper.

The PIs can also use the credit level to determine how much of a recommendation letter to provide for researchers

Tools for crowdresearch

The tools needed to collaborate on crowdresearch are cheap and readily available to anyone.

  • Google Docs, Hangouts, Gmail are all freely available, although you may need to purchase more Drive space to host the work on the project.
  • Wiki software is freely available as well from multiple sources including Wikipedia (MediaWiki).
  • Slack is readily available for a low cost, but other open source alternatives exist, if that’s a problem.
  • Github code repository is also readily available for a reasonable cost but  there may be alternatives that use Google Drive storage for the repo.
  • Web hosting is needed to host the online Wiki, media and other assets.

Initial projects were chosen in computer science, so outside of the above tools, they could depend on open source. Other projects will need to consider how much experimental apparatus, how to fund these apparatus purchases, and how a global researchers can best make use of these.

My crowdresearch projects

Some potential commercial crowdresearch projects where we could use aggregate credit score and perhaps other measures of participation to apportion revenue, if any.

  • NVMe storage system using a light weight storage server supporting NVMe over fabric access to hybrid NVMe SSD – capacity disk storage.
  • Proof of Stake (PoS) Ethereum pooling software using Linux servers to create a pool for PoS ETH mining.
  • Bipedal, dual armed, dual handed, five-fingered assisted care robot to supply assistance and care to elders and disabled people throughout the world.

Non-commercial projects, where we would use aggregate credit score to apportion attribution and any potential remuneration.

  • A fully (100%?) mechanical rover able to survive, rove around, perform  scientific analysis, receive/transmit data and possibly, effect repairs from within extreme environments such as the surface of Venus, Jupiter and Chernoble/Fukishima Daiichi reactor cores.
  • Zero propellent interplanetary tug able to rapidly transport rovers, satellites, probes, etc. to any place within the solar system and deploy theme properly.
  • A Venusian manned base habitat including the design, build process and ongoing support for the initial habitat and any expansion over time, such that the habitat can last 25 years.

Any collaborators across the world, interested in collaborating on any of these projects, do let me know, here via comments. Please supply some way to contact you and any skills you’re interested in developing or already have that can help the project(s).

I would be glad to take on PI role for the most popular project(s), if I get sufficient response (no idea what this would be). And  I’d be happy to purchase the Drive, GitHub, Slack and web hosting accounts needed to startup and continue to fruition the most popular project(s). And if there’s any, more domain experienced PIs interested in taking any of these projects do let me know.  

Comments?

Picture Credit(s): Crowd by Espen Sundve;

Videoblogger Video Conference by Markus Sandy;

Researchers Night 2014 by Department of Computer Science, NTNU;

Disk rulz, at least for now

Last week WDC announced their next generation technology for hard drives, MAMR or Microwave Assisted Magnetic Recording. This is in contrast to HAMR, Heat (laser) Assisted Magnetic Recording. Both techniques add energy so that data can be written as smaller bits on a track.

Disk density drivers

Current hard drive technology uses PMR or Perpendicular Magnetic Recording with or without SMR (Shingled Magnetic Recording) and TDMR (Two Dimensional Magnetic Recording), both of which we have discussed before in prior posts.

The problem with PMR-SMR-TDMR is that the max achievable disk density is starting to flat line and approaching the “WriteAbility limit” of the head-media combination.

That is even with TDMR, SMR and PMR heads, the highest density that can be achieved is ~1.1Tb/sq.in. The Writeability limit for the current PMR head-media technology is ~1.4Tb/sq.in. As a result most disk density increases over the past years has been accomplished by adding platters-heads to hard drives.

MAMR and HAMR both seem able to get disk drives to >4.0Tb/sq.in. densities by adding energy to the magnetic recording process, which allows the drive to record more data in the same (grain) area.

There are two factors which drive disk drive density (Tb/sq.in.): Bits per inch (BPI) and Tracks per inch (TPI). Both SMR and TDMR were techniques to add more TPI.

I believe MAMR and HAMR increase BPI beyond whats available today by writing data on smaller magnetic grain sizes (pitch in chart) and thus more bits in the same area. At 7nm grain sizes or below PMR becomes unstable, but HAMR and MAMR can record on grain sizes of 4.5nm which would equate to >4.5Tb/sq.in.

HAMR hurdles

It turns out that HAMR as it uses heat to add energy, heats the media drives to much higher temperatures than what’s normal for a disk drive, something like 400C-700C.  Normal operating temperatures for disk drives is  ~50C.  HAMR heat levels will play havoc with drive reliability. The view from WDC is that HAMR has 100X worse reliability than MAMR.

In order to generate that much heat, HAMR needs a laser to expose the area to be written. Of course the laser has to be in the head to be effective. Having to add a laser and optics will increase the cost of the head, increase the steps to manufacture the head, and require new suppliers/sourcing organizations to supply the componentry.

HAMR also requires a different media substrate. Unclear why, but HAMR seems to require a glass substrate, the magnetic media (many layers) is  deposited ontop of the glass substrate. This requires a new media manufacturing line, probably new suppliers and getting glass to disk drive (flatness-bumpiness, rotational integrity, vibrational integrity) specifications will take time.

Probably more than a half dozen more issues with having laser light inside a hard disk drive but suffice it to say that HAMR was going to be a very difficult transition to perform right and continue to provide today’s drive reliability levels.

MAMR merits

MAMR uses microwaves to add energy to the spot being recorded. The microwaves are generated by a Spin Torque Oscilator, (STO), which is a solid state device, compatible with CMOS fabrication techniques. This means that the MAMR head assembly (PMR & STO) can be fabricated on current head lines and within current head mechanisms.

MAMR doesn’t add heat to the recording area, it uses microwaves to add energy. As such, there’s no temperature change in MAMR recording which means the reliability of MAMR disk drives should be about the same as todays disk drives.

MAMR uses todays aluminum substrates. So, current media manufacturing lines and suppliers can be used and media specifications shouldn’t have to change much (?) to support MAMR.

MAMR has just about the same max recording density as HAMR, so there’s no other benefit to going to HAMR, if MAMR works as expected.

WDC’s technology timeline

WDC says they will have sample MAMR drives out next year and production drives out in 2019. They also predict an enterprise 40TB MAMR drive by 2025. They have high confidence in this schedule because MAMR’s compatabilitiy with  current drive media and head manufacturing processes.

WDC discussed their IP position on HAMR and MAMR. They have 400+ issued HAMR patents with another 100+ pending and 75 issued MAMR patents with 46 more pending. Quantity doesn’t necessarily equate to quality, but their current IP position on both MAMR and HAMR looks solid.

WDC believes that by 2020, ~90% of enterprise data will be stored on hard drives. However, this is predicated on achieving a continuing, 10X cost differential between disk drives and (QLC 3D) flash.

What comes after MAMR is subject of much speculation. I’ve written on one alternative which uses liquid Nitrogen temperatures with molecular magnets, I called CAMR (cold assisted magnetic recording) but it’s way to early to tell.

And we have yet to hear from the other big disk drive leader, Seagate. It will be interesting to hear whether they follow WDC’s lead to MAMR, stick with HAMR, or go off in a different direction.

Comments?

 

Photo Credit(s): WDC presentation

Research reveals ~liquid nitrogen temperature molecular magnets with 100X denser storage


Must be on a materials science binge these days. I read another article this week in Phys.org on “Major leap towards data storage at the molecular level” reporting on a Nature article “Molecular magnetic hysteresis at 60K“, where researchers from University of Manchester, led by Dr David Mills and Dr Nicholas Chilton from the School of Chemistry, have come up with a new material that provides molecular level magnetics at almost liquid nitrogen temperatures.

Previously, molecular magnets only operated at from 4 to 14K (degrees Kelvin) from research done over the last 25 years or so, but this new  research shows similar effects operating at ~60K or close to liquid nitrogen temperatures. Nitrogen freezes at 63K and boils at ~77K, and I would guess, is liquid somewhere between those temperatures.

What new material

The new material, “hexa-tert-butyldysprosocenium complex—[Dy(Cpttt)2][B(C6F5)4], with Cpttt = {C5H2tBu3-1,2,4} and tBu = C(CH3)3“, dysprosocenium for short was designed (?) by the researchers at Manchester and was shown to exhibit magnetism at the molecular level at 60K.

The storage effect is hysteresis, which is a materials ability to remember the last (magnetic/electrical/?) field it was exposed to and the magnetic field is measured in oersteds.

The researchers claim the new material provides magnetic hysteresis at a sweep level of 22 oersteds. Not sure what “sweep level of 22 oersteds” means but I assume a molecule of the material is magnetized with a field strength of 22 oersteds and retains this magnetic field over time.

Reports of disk’s death, have been greatly exaggerated

While there seems to be no end in sight for the densities of flash storage these days with 3D NAND (see my 3D NAND, how high can it go post or listen to our GBoS FMS2017 wrap-up with Jim Handy podcast), the disk industry lives on.

Disk industry researchers have been investigating HAMR, ([laser] heat assisted magnetic recording, see my Disk density hits new record … post) for some time now to increase disk storage density. But to my knowledge HAMR has not come out in any generally available disk device on the market yet. HAMR was supposed to provide the next big increase in disk storage densities.

Maybe they should be looking at CAMMR, or cold assisted magnetic molecular recording (heard it here, 1st).

According to Dr Chilton using the new material at 60K in a disk device would increase capacity by 100X. Western Digital just announced a 20TB MyBook Duo disk system for desktop storage and backup. With this new material, at 100X current densities, we could have 2PB Mybook Duo storage system on your desktop.

That should keep my ever increasing video-photo-music library in fine shape and everything else backed up for a little while longer.

Comments?

Photo Credit(s): Molecular magnetic hysteresis at 60K, Nature article

 

New chip architecture with CPU, storage & sensors in one package

Read an article the other day in MIT news, (3D chip combines computing and data storage) about a new 3D chip out of Stanford and MIT research, which includes CPU, RRAM (resistive RAM) storage class memories and sensors in one single package. Such a chip architecture vastly minimizes the off chip bottleneck to access storage and sensors.

Chip componentry

The chip’s sensors are based on carbon nanotubes. Aside from a layer of silicon at the bottom, all the rest of transistors used in the chip are also based off of carbon nanotube FET (field effect transistors).

The RRAM storage class memory is a based on a dielectric material which uses electrical resistance to store non-volatile data.

The bottom layer is a silicon based CPU. On top of the silicon is a carbon nanotube layer. Next comes the RRAM and the top layer is more carbon nanotubes making up the sensor array.

Architectural benefits

One obvious benefit is having data storage directly accessible to the CPU is that there’s no longer a need to go off chip to access data. The 2nd major advantage to the chip architecture is that the sensor array can write directly to RRAM storage, so there’s no off chip delay to provide sensor readout and storage.

Another advantage to using carbon nanotube FET’s is that they can be an order of magnitude more energy efficient than silicon transistors. Moreover, RRAM has the potential to be much denser than DRAM.

Finally, another major advantage is that this can all be built in one 3D chip because carbon nanotube and RRAM fabrication can be done at relatively cooler temperatures (~200C) vs. silicon fabrication which requires relatively high temperatures (1000C). Silicon cannot be readily fabricated in multiple layers because of the high temperatures required which will harm lower layers. But you could fabricate the lowest layer in silicon and then the rest as either carbon nanotube FETs or RRAM without harming the silicon layer.

Transistor/RRAM counts

The chip as fabricated has a million RRAM cells (bits?) and 2 million nanotube FETs. In contrast, in 2014, Intel’s 15-core Xeon Ivy Bridge EX had 4.3B transistors and current DRAM chips offer 64Gb. So there’s a ways to go before carbon nanotube and RRAM densities can get to a level available from silicon today.

However, as they have a bottom layer of silicon they can have all the CPU complexity of an Intel processor and still build RRAM and carbon nanotubes FETs on top of that. Which makes this chip architecture compatible with current CMOS fabrication techniques and a very interesting addition to current CPU architectures.

~~~~

Unclear to me why they stopped at 4 layers (1-silicon FET, 1 carbon nanotubes FET, 1 RRAM and 1 carbon nanotubes FET [sensor array]). If they can do 4 why not do 5 or more. That way they could pack in even more RRAM storage and perhaps more sensor layers.

Also, not sure what the bottom most layer of carbon nanotubes is doing. If I had to hazard a guess, it’s being used for RRAM control logic. But I could be wrong.

I could see how these chips could be used for very specialized sensor applications, with a limited need for data storage. The researchers claim many types of sensors can be created using carbon nanotubes. If that’s the case, maybe we might see these sorts of chips showing up all over the place.

Comments?

Photo Credit(s): Three dimensional integration of nanotechnologies for computing and data storage on a single chip, Nature magazine. 

Zipline delivers blood 7X24 using fixed wing drones in Rwanda

Read an article the other day in MIT Tech Review (Zipline’s ambitious medical drone delivery in Africa) about a startup in Silicon Valley, Zipline, that has started delivering blood by drones to remote medical centers in Rwanda.

We’ve talked about drones before (see my Drones as a leapfrog technology post) and how they could be another leapfrog 3rd world countries into the 21st century. Similar, to cell phones, drones could be used to advance infrastructure without having to go replicate the same paths as 1st world countries such as building roads/hiways, trains and other transport infrastructure.

The country

Rwanda is a very hilly but small (10.2K SqMi/26.3 SqKm) and populous (pop. 11.3m) country in east-central Africa, just a few degrees south of the Equator. Rwanda’s economy is based on subsistence agriculture with a growing eco-tourism segment.

Nonetheless, with all
its hills and poverty roads in Rwanda are not the best. In the past delivering blood supplies to remote health centers could often take hours or more. But with the new Zipline drone delivery service technicians can order up blood products with an app on a smart phone and have it delivered via parachute to their center within 20 minutes.

Drone delivery operations

In the nest, a center for drone operations, there is a tent housing the blood supplies, and logistics for the drone force. Beside the tent are a steel runway/catapults that can launch drones and on the other side of the tent are brown inflatable pillows  used to land the drones.

The drones take a pre-planned path to the remote health centers and drop their cargo via parachute to within a five meter diameter circle.

Operators fly the drones using an iPad and each drone has an internal navigation system. Drones fly a pre-planned flightaugmented with realtime kinematic satellite navigation. Drone travel is integrated within Rwanda’s controlled air space. Routes are pre-mapped using detailed ground surveys.

Drone delivery works

Zipline drone blood deliveries have been taking place since late 2016. Deliveries started M-F, during daylight only. But by April, they were delivering 7 days a week, day and night.

Zipline currently only operates in Rwanda and only delivers blood but they have plans to extend deliveries to other medical products and to expand beyond Rwanda.

On their website they stated that before Zipline, delivering blood to one health center would take four hours by truck which can now be done in 17 minutes. Their Muhanga drone center serves 21 medical centers throughout western Rwanda.

Photo Credits: Flyzipline.com

Axellio, next gen, IO intensive server for RT analytics by X-IO Technologies

We were at X-IO Technologies last week for SFD13 in Colorado Springs talking with the team and they showed us their new IO and storage intensive server, the Axellio. They want to sell Axellio to customers that need extreme IOPS, very high bandwidth, and large storage requirements. Videos of X-IO’s sessions at SFD13 are available here.

The hardware

Axellio comes in 2U appliance with two server nodes. Each server supports  2 sockets of Intel E5-26xx v4 CPUs (4 sockets total) supporting from 16 to 88 cores. Each server node can be configured with up to 1TB of DRAM or it also supports NVDIMMs.

There are two key differentiators to Axellio:

  1. The FabricExpress™, a PCIe based interconnect which allows both server nodes to access dual-ported,  2.5″ NVMe SSDs; and
  2. Dense drive trays, the Axellio supports up to 72 (6 trays with 12 drives each) 2.5″ NVMe SSDs offering up to 460TB of raw NVMe flash using 6.4TB NVMe SSDs. Higher capacity NVMe SSDS available soon will increase Axellio capacity to 1PB of raw NVMe flash.

They also probably spent a lot of time on packaging, cooling and power in order to make Axellio a reliable solution for edge computing. We asked if it was NEBs compliant and they told us not yet but they are working on it.

Axellio can also be configured to replace 2 drive trays with 2 processor offload modules such as 2x Intel Phi CPU extensions for parallel compute, 2X Nvidia K2 GPU modules for high end video or VDI processing or 2X Nvidia P100 Tesla modules for machine learning processing. Probably anything that fits into Axellio’s power, cooling and PCIe bus lane limitations would also probably work here.

At the frontend of the appliance there are 1x16PCIe lanes of server retained for networking that can support off the shelf NICs/HCAs/HBAs with HHHL or FHHL cards for Ethernet, Infiniband or FC access to the Axellio. This provides up to 2x100GbE per server node of network access.

Performance of Axellio

With Axellio using all NVMe SSDs, we expect high IO performance. Further, they are measuring IO performance from internal to the CPUs on the Axellio server nodes. X-IO says the Axellio can hit >12Million IO/sec with at 35µsec latencies with 72 NVMe SSDs.

Lab testing detailed in the chart above shows IO rates for an Axellio appliance with 48 NVMe SSDs. With that configuration the Axellio can do 7.8M 4KB random write IOPS at 90µsec average response times and 8.6M 4KB random read IOPS at 164µsec latencies. Don’t know why reads would take longer than writes in Axellio, but they are doing 10% more of them.

Furthermore, the difference between read and write IOP rates aren’t close to what we have seen with other AFAs. Typically, maximum write IOPs are much less than read IOPs. Why Axellio’s read and write IOP rates are so close to one another (~10%) is a significant mystery.

As for IO bandwitdh, Axellio it supports up to 60GB/sec sustained and in the 48 drive lax testing it generated 30.5GB/sec for random 4KB writes and 33.7GB/sec for random 4KB reads. Again much closer together than what we have seen for other AFAs.

Also noteworthy, given PCIe’s bi-directional capabilities, X-IO said that there’s no reason that the system couldn’t be doing a mixed IO workload of both random reads and writes at similar rates. Although, they didn’t present any test data to substantiate that claim.

Markets for Axellio

They really didn’t talk about the software for Axellio. We would guess this is up to the customer/vertical that uses it.

Aside from the obvious use case as a X-IO’s next generation ISE storage appliance, Axellio could easily be used as an edge processor for a massive fabric of IoT devices, analytics processor for large RT streaming data, and deep packet capture and analysis processing for cyber security/intelligence gathering, etc. X-IO seems to be focusing their current efforts on attacking these verticals and others with similar processing requirements.

X-IO Technologies’ sessions at SFD13

Other sessions at X-IO include: Richard Lary, CTO X-IO Technologies gave a very interesting presentation on an mathematically optimized way to do data dedupe (caution some math involved); Bill Miller, CEO X-IO Technologies presented on edge computing’s new requirements and Gavin McLaughlin, Strategy & Communications talked about X-IO’s history and new approach to take the company into more profitable business.

Again all the videos are available online (see link above). We were very impressed with Richard’s dedupe session and haven’t heard as much about bloom filters, since Andy Warfield, CTO and Co-founder Coho Data, talked at SFD8.

For more information, other SFD13 blogger posts on X-IO’s sessions:

Full Disclosure

X-IO paid for our presence at their sessions and they provided each blogger a shirt, lunch and a USB stick with their presentations on it.