#VMworld2015 day 1 announcements


IMG_5411It seemed like today was all about the cloud and cloud native apps. Among the many announcements, VMware announced two key new capabilities: VMware integrated containers and the Python Photon Platform.

Containers running on VMware

  • VMware vSphere Integrated Containers is an implementation of containers that runs natively under vSphere. The advantage of this solution is that now when developers fire up a multi-container app,  each container now exists as a separate VM under vSphere and can be managed, monitored and secured just like any other VM in the environment. Previously a multi-container app would be one VM per container engine  containing potentially many containers running under the single VM. But with vSphere Integrated Containers, the container engine and the light weight Linux kernel (Python Photon OS) are now integrated into the ESX hypervisor so each container runs as a native VM. Integrated containers is an follow on to a combination of Project Bonneville, Project Python Photon (OS) and Instant clones. Recall with Instant Clones one can spin up a clone of a VM in less than a second and its memory footprint is 0MB.
  • Python Photon Platform takes container execution to a whole new level, with a new deployment of a hypervisor tailor made to run containers (not VMs). With the Python Photon Platform one natively runs container frameworks underneath the platform. Python Photon Platform consists of Python Photon Machine which is Python Photon OS (lightweight Linux Kernel distro) & the new Microvisor (new light weight hypervisor for container hardware calls) and Python Photon Controller which is a distributed control plane and management API. With Python Photon Platform one can manage 100K to Millions of containers, running under 1000s of container frameworks.

Over time Python Photon Platform is intended to be open sourced. VMware also announced a bundling of Pivotal Cloud Foundry with the Python Photon Platform so as to better run cloud native apps implemented in Cloud Foundry. But the ultimate intent is to provide support for Google Kubernetes, Apache Mesos and any other container framework that comes out.

So now you can run your Docker container apps or any other container app solution in two different ways. One depends on vSphere standard management platform and runs container apps as a standard VMs. The other takes a completely green field approach and runs container frameworks natively in a ground up new hypervisor solution with a new management solution altogether that scales.

The advantage of Python Photon is that it scales to extreme, cloud level types of application environments. Python Photon is intended to run cloud-native apps.

vCloud Air extensions

One of the other major things that VMware demoed today was moving a VM from on premises to vCloud Air and back again – a real crowd pleaser. One VMware Exec said that after MIT had convinced them they needed to be able to move apps from on premises to the cloud for dev-test apps. They then turned around and decided they wanted to move dev-test activity back to their onprem environment and instead wanted to move their production to vCloud Air.

They demoed both capabilities using vMotion to move a VM to vCloud Air and using it again to move it back. The nice thing about all this is that all the security and other attributes of the VM can move to the cloud and back again along with the VM. All the while the VM continued to operate, with no disruption to execution. They mention that it could potentially take hours to move the data for the VM.

IMG_5413There were a number of other capabilities announced today including EVO SDDC (EVO: RACK reborn) which includes a new datacenter management solution. Customers can now roll in a rack of servers and have EVO SDDC manage them and deploy software defined data center on them in a matter of hours. Within EVO SDDC you can have application domains which span racks of servers but provide isolation and management multi-tennancy.

NSX 6.2 was also discussed and essentially is key to extending your networking from on premises to vCloud Air. With NSX 6.2 local routing, micro segmentation security and app firewalls can be configured locally and then be “extended” to the vCloud Air environment.

Lots of moving parts here and I probably missed some key components to these solutions and didn’t cover any of them well enough other than to give a feel for what they are.

But one thing is clear, VMware’s long term strategy is to take your native, on premises VMs to vCloud Air and back again as well as if your Dev-Ops group or any other BU wants to use containers to implement cloud apps, VMware has you covered coming and going.


What’s next for Nexenta

We talked with Nexenta at Storage Field Day 6 where they discussed their current and future software defined storage solutions. I highly encourage you to see the SFD6 videos of their sessions if you want to learn more about them.

Nexenta was an earlier adopter of software defined storage and have recently signed with Solinea to support Nexenta under OpenStack CINDER block storage. Nexenta is based on ZFS and supports inline deduplication and advanced performance functionality.


NexentaStor™ is there base storage software and comes as a download in both an Enterprise edition and Community edition. NexentaStor can run on most industry standard, x86 server platforms.

  • The Community edition supports up to 18TB and uses DAS and/or SAS connected storage to supply NFS and SMB file services.
  • The Enterprise edition extends capacity into the PB and supports FC and iSCSI block storage services as well as file services. The Enterprise edition supports plugins for HA solutions and storage replication.

Nexenta mentioned that they had over 6500 customers for NexentaStor of which 1500 are cloud service providers. But they have a whole lot more to offer than just NexentaStor including NexentaConnect™ and coming soon, NexentaEdge™ and NexentaFusion™.


NexentaConnect software works with VMware or Citrix solutions to provide advanced storage services, such as file services, IO acceleration, and storage automation/analytics. There are three products in the NexentaConnect family:

  • NexentaConnect for VMware Virtual SAN – by combining NexentaConnect together with VMware Virtual SAN software and DAS or SAS storage one can offer NFS and SMB/CIFS file services.  Prior to NexentaConnect, VMware Virtual SAN storage only provided VMware dedicated SAN storage, but now that same infrastructure can be used for any NFS or SMB/CIFS file system storage.
  • NexentaConnect for VMware Horizon – by combining NexentaConnect with VMware Horizon and DAS plus local SSD storage, one can provide accelerated virtual desktop IO with state of the art write logging, inline deduplication, and GUI based storage automation/analytics.
  • NexentaConnect for Citrix XenDesktop (in Beta now) by combining NexentaConnect with Citrix XenDesktop software and DAS plus local SSD storage, one can accelerate XenDesktop IO and ease the management of XenDesktop storage.

Nexenta has teamed up with Dell to offer Dell-Nexenta (and VMware) storage solution using NexentaConnect and VMware Virtual SAN software on Dell hardware.


They spent a lot of time on NexentaEdge and what they plan to offer is a software defined object storage solution. Most object storage systems on the market either started as software only or currently support a software only version. But Nexenta is the first to come at it from a file services heritage that I know of.

NexentaEdge will offer iSCSI services as well as standard object storage services such as Amazon S3 and OpenStack SWIFT. Their solution splits up objects into chunks and replicates/distributes the object chunks across their software defined (object) storage cluster.

Cluster communications uses UDP (not TCP) and so has less overhead. NexentaEdge cluster communications uses their own Replicast protocol to send messages and data out across the cluster. .

They designed NexentaEdge to be able to support Shingle Magnetic Recording (SMR) disks which are very dense storage but occasionally have to go “away” while they perform  garbage collection/re-organization. I did two posts about SMR disks a while back (see Shingled magnetic recording disks and Sequential-only disk for more information on SMR).

I have to admit I had a BIG problem with support for iSCSI over eventually consistent storage. I don’t see how this can be used to support ACID database requests but I suppose Nexenta would argue that anyone using object storage for ACID database IO needs to have their head examined.


Although this was not discussed as much, NexentaFusion is another future offering supplying software defined storage analytics and orchestration automation. They intent is to use NexentaFusion with NexentaStor, NexentaConnect and/or NexentaEdge. As you scale up your Nexenta storage cluster, automation/orchestration and storage analytics starts to become a more pressing need. According to Nexenta’s website NexentaFusion 1.0 will support multi-tennant storage monitoring and real time storage analytics while NexentaFusion 2.0 will supportstorage provisioning and orchestration.


Nexenta provided Converse all-star shoes to all the participants as well as pens and notebooks. I had to admit I liked the look of the new tennis shoes but my wife and kids thought I was crazy.

Different views on Nexenta from the other SFD6 bloggers can be found below:

SFD6 – Day 2 – Nexenta from PenguinPunk (Dan Firth, @PenguinPunk)

Nexenta – Back in da house by Nigel Poulton (@NigelPoulton)

Sorry Nexenta, but I don’t get it … and questions arise by Juku (Enrico Signoretti, @ESignoretti)

Day 2 at SFD6: Nexenta by Absolutely Windows (John Obeto, @JohnObeto)

VMworld 2014 projects Marvin, Mystic, and more

IMG_2902[This post was updated after being published to delete NDA material – sorry, RL] Attended VMworld2014 in San Francisco this past week. Lots of news, mostly about vSphere 6 beta functionality and how the new AirWatch acquisition will be rolled into VMware’s End-User Computing framework.

vSphere 6.0 beta

Virtual Volumes (VVOLs) is in beta and extends VMware’s software-defined storage model to external NAS and SAN storage.  VVOLs transforms SAN/NAS  storage into VM-centric devices by making the virtual disk a native representation of the VM at the array level, and enables app-centric, policy-based automation of SAN and NAS based storage services, somewhat similar to the capabilities used in a more limited fashion by Virtual SAN today.

Storage system features have proliferated and differentiated over time and to be able to specify and register any and all of these functional nuances to VMware storage policy based management (SPBM) service is a significant undertaking in and of itself. I guess we will have to wait until it comes out of beta to see more. NetApp had a functioning VVOL storage implementation on the show floor.

Virtual SAN 1.0/5.5 currently has 300+ customers with 30+ ready storage nodes from all major vendors, There are reference architecture documents and system bundles available.

Current enhancements outside of vSphere 6 beta

vRealize Suite extends automation and monitoring support for a broad mix of VMware and non VMware infrastructure and services including OpenStack, Amazon Web Services, Azure, Hyper-V, KVM, NSX, VSAN and vCloud Air (formerly vCloud Hybrid Services), as well as vSphere.

New VMware functionality being released:

  • vCenter Site Recovery Manager (SRM) 5.8 – provides self service DR through vCloud Automation Center (vRealize Automation) integration, with up to 5000 protected VMs per vCenter and up to 2000 VM concurrent recoveries. SRM UI will move to be supported under vSphere’s Web Client.
  • vSphere Data Protection Advanced 5.8 – provides configurable parallel backups (up to 64 streams) to reduce backup duration/shorten backup windows, access and restore backups from anywhere, and provides support for Microsoft Exchange DAGs, and SQL Clusters, as well as Linux LVMs and EXT4 file systems.

VMware NSX 6.1 (in beta) has 150+ customers and provides micro segmentation security levels which essentially supports fine grained security firewall definitions almost at the VM level, there are over 150 NSX customers today.

vCloud Hybrid Cloud Services is being rebranded as vCloud Air, and is currently available globally through data centers in the US, UK, and Japan. vCloud Air is part of the vCloud Air Network, an ecosystem of over 3,800 service providers with presence in 100+ countries that are based on common VMware technology.  VMware also announced a number of new partnerships to support development of mobile applications on vCloud Air.  Some additional functionality for vCloud Air that was announced at VMworld includes:

  • vCloud Air Virtual Private Cloud On Demand beta program supports instant, on demand consumption model for vCloud services based on a pay as you go model.
  • VMware vCloud Air Object Storage based on EMC ViPR is in beta and will be coming out shortly.
  • DevOps/continuous integration as a service, vRealize Air automation as a service, and DB as a service (MySQL/SQL server) will also be coming out soon

End-User Computing: VMware is integrating AirWatch‘s (another acquisition) enterprise mobility management solutions for mobile device management/mobile security/content collaboration (Secure Content Locker) with their current Horizon suite for virtual desktop/laptop support. VMware End User Computing now supports desktop/laptop virtualization, mobile device management and security, and content security and file collaboration. Also VMware’s recent CloudVolumes acquisition supports a light weight desktop/laptop app deployment solution for Horizon environments. AirWatch already has a similar solution for mobile.

OpenStack, Containers and other collaborations

VMware is starting to expand their footprint into other arenas, with new support, collaboration and joint ventures.

A new VMware OpenStack Distribution is in beta now to be available shortly, which supports VMware as underlying infrastructure for OpenStack applications that use  OpenStack APIs. VMware has become a contributor to OpenStack open source. There are other OpenStack distributions that support VMware infrastructure available from HP, Cannonical, Mirantis and one other company I neglected to write down.

VMware has started a joint initiative with Docker and Pivotal to broaden support for Linux containers. Containers are light weight packaging for applications that strip out the OS, hypervisor, frameworks etc and allow an application to be run on mobile, desktops, servers and anything else that runs Linux O/S (for Docker Linux 3.8 kernel level or better). Rumor has it that Google launches over 15M Docker containers a day.

VMware container support expands from Pivotal Warden containers, to now also include Docker containers. VMware is also working with Google and others on the Kubernetes project which supports container POD management (logical groups of containers). In addition Project Fargo is in development which is VMware’s own lightweight packaging solution for VMs. Now customers can run VMs, Docker containers, or Pivotal (Warden) containers on the same VMware infrastructure.

AT&T and VMware have a joint initiative to bring enterprise grade network security, speed and reliablity to vCloud Air customers which essentially allows customers to use AT&T VPNs with vCloud Air. There’s more to this but that’s all I noted.

VMware EVO, the next evolution in hyper-convergence has emerged.

  • EVO RAIL (formerly known as project Marvin) is appliance package from VMware hardware partners that runs vSphere Suite and Virtual SAN and vCenter Log Insight. The hardware supports 4 compute/storage nodes in a 2U tall rack mounted appliance. 4 of these appliances can be connected together into a cluster. Each compute/storage node supports ~100VMs or ~150 virtual desktops. VMware states that the goal is to have an EVO RAIL implementation take at most 15 minutes from power on to running VMs. Current hardware partners include Dell, EMC (formerly named project Mystic), Inspur (China), Net One (Japan), and SuperMicro.
  • EVO RACK is a data center level hardware appliance with vCloud Suite installed and includes Virtual SAN and NSX. The goal is for EVO RACK hardware to support a 2hr window from power on to a private cloud environment/datacenter deployed and running VMs. VMware expects a range of hardware partners to support EVO RACK but none were named. They did specifically mention that EVO RACK is intended to support hardware from the Open Compute Project (OCP). VMware is providing contributions to OCP to facilitate EVO RACK deployment.


Sorry about the stream of consciousness approach to this. We got a deep dive on what’s in vSphere 6 but it was all under NDA. So this just represents what was discussed openly in keynotes and other public sessions.



What’s wrong with SPECsfs2008?

I have been analyzing SPECsfs results now for almost 7 years now and I feel that maybe it’s time for me to discuss some of the t problems with SPECsfs2008 today that should be fixed in the next SPECsfs20xx whenever that comes out.


First and foremost, for CIFS SMB 1 is no longer pertinent to today’s data center. The world of Microsoft has moved on to SMB 2 mostly and are currently migrating to SMB 3.  There were plenty of performance fixes in the last years SMB 3.0 release which would be useful to test with current storage systems. But I would be even be somewhat happy with SMB2 if that’s all I can hope for.

My friends at Microsoft would consider me remiss if I didn’t mention that since SMB 2 they no longer call it CIFS and have moved to SMB. SPECsfs should follow this trend. I have tried to use CIFS/SMB in my blog posts/dispatches as a step in this direction mainly because SPEC continues to use CIFS and Microsoft wants me to use SMB.

In my continuing quest to better compare different protocol performance I believe it would be useful to insure that the same file size distributions are used for both CIFS and NFS benchmarks. Although the current Users Guide discusses some file size information for NFS it is silent when it comes to CIFS. I have been assuming that they were the same because of lack of information but this would be worthy to have confirmed in documentation.

Finally for CIFS, it would be very useful if there could be a closer approximation of the same amount of data transfers that are done for NFS.  This is a nit but when I compare CIFS to NFS storage system results there is a slight advantage to NFS because NFS’s workload definition doesn’t do as much reading as CIFS. In contrast, CIFS has slightly less file data write activity than the NFS benchmark workload. Having them be exactly the same would help in any (unsanctioned) comparisons.


As for NFSv3, although NFSv4 has been out for more than 3 years now, it has taken a long time to be widely adopted. However, these days there seems to be more client and storage support coming online every day and maybe this would be a good time to move on to NFSv4.

The current NFS workloads, while great for the normal file server activities, have not kept pace with much of how NFS is used today especially in virtualized environments. As far as I can tell under VMware NFS data stores don’t do a lot of meta-data operations and do an awful lot more data transfers than normal file servers do. Similar concerns apply to NFS used for Oracle or other databases. Unclear how one could incorporate a more data intensive workload mix into the standard SPECsfs NFS benchmark but it’s worthy of some thought. Perhaps we could create a SPECvms20xx benchmark that would test these types of more data intensive workloads.

For both NFSv3 and CIFs benchmarks

Both the NFSv3 and CIFS benchmarks typically report [throughput] ops/sec. These are a mix of all the meta-data activities and the data transfer activities.  However, I think many storage customers and users would like a finer view of system performance. .

I have often been asked just how many files a storage system actually support. This depends of course on the workload and file size distributions but SPECsfs already defines this. As a storage performance expert, I would also like to know how much data transfer can a storage system support in MB/sec read and written.  I believe both of these metrics can be extracted from the current benchmark programs with a little additional effort. Probably another half dozen metrics that would be useful maybe we could sit down and have an open discussion of what these might be.

Also the world has changed significantly over the last 6 years and SSD and flash has become much more prevalent. Some of your standard configuration tables could be better laid out to insure that readers understand just how much DRAM, flash, SSDs and disk drives are in a configuration.

Beyond file NAS

Going beyond SPECsfs there is a whole new class of storage, namely object storage where there are no benchmarks available. I would think now that Amazon S3 and Openstack Cinder are well defined and available that maybe a new set of SPECobj20xx benchmarks would be warranted. I believe with the adoption of software defined data centers, object storage may become the storage of choice over the next decade or so. If that’s the case then having some a benchmark to measure object storage performance would help in its adoption. Much like the original SPECsfs did for NFS.

Then there’s the whole realm of server SAN or (hyper-)converged storage which uses DAS inside a cluster of compute servers to support block and file services. Not sure exactly where this belongs but NFS is typically the first protocol of choice for these systems and having some sort of benchmark configuration that supports converged storage would help adoption of this new type of storage as well.

I think thats about it for now but there’s probably a whole bunch more that I am missing out here.


Boot storms and VDI storage

We were having a discussion about virtual desktop infrastructure (VDI) environments the other day and the topic came around to boot storms.

When VDI first started coming out many storage companies were concerned about the effect boot storms, shutdown storms, AV scan storms, etc. would have on system performance. As such, they were keen to demonstrate how well their systems did against boot storms and other un-natural IO activity to support VDI environments.

But at last years SFD4 and during subsequent discussions around the storage round table noone mention boot storms as being a concern anymore. Nowadays it’s more that VMs in general create a sort of IO mixer and that discerning IO patterns in VM environments is neigh impossible without insight into the VM’s IO workload in isolation.

Why is it that boot storms are no longer a concern?

It seems that a couple of things have emerged as more VDI implementations are put in place. For example, not everyone in a company boots up on Monday morning at 8am, spreading out any potential boot storms over a much longer period of time than anticipated in boot storm simulations.

Also it turns out that a lot of people never actually shut down their desktops so the need to boot is drastically reduced for these people, perhaps once/week or once/month or once/bluescreen. Although, I don’t know this for a fact, someone mentioned that VMware View has a parameter that can disable end user shutdowns and just puts the VDI instances into suspended animation (I would say sleep but that seems to be a Mac term).

Another case in point is that VMware View Planner doesn’t simulate or even measure virtual desktop boot up activity. It seems that simulating boot storms is no longer a reasonable way to help measure how effective storage systems can handle VMware View implementations.

On the other hand, I am aware of at least one other VDI benchmarking tools that make a point of simulating boot storms and other similar extreme workload activities.

So are boot storms, no longer an issue for storage systems in VDI implementations or not?

Photo Credits: Storm cloud, Duncan, Oklahoma by chascar

Windows Server 2012 R2 storage changes announced at TechEd

Microsoft TechEd Trends driving IT todayMicrosoft TechEd USA is this week and they announced a number of changes to the storage services that come with Windows Server 2012 R2

  • Azure DRaaS – Microsoft is attempting to democratize DR by supporting a new DR-as-a-Service (DRaaS).  They now have an Azure service that operates in conjunction with Windows Server 2012 R2 that provides orchestration and automation for DR site failover and fail back to/from remote sites.  Windows Server 2012 R2 uses Hyper-V Replica to replicate data across to the other site. Azure DRaaS supports DR plans (scripts) to identify groups of Hyper-V VMs which need to be brought up and their sequencing. VMs within a script group are brought up in parallel but different groups are brought up in sequence.  You can have multiple DR plans, just select the one to execute. You must have access to Azure to use this service. Azure DR plans can pause for manual activities and have the ability to invoke PowerShell scripts for more fine tuned control.  There’s also quite a lot of setup that must be done, e.g. configure Hyper-V hosts, VMs and networking at both primary and secondary locations.  Network IP injection is done via mapping primary to secondary site IP addresses. The Azzure DRaaS really just provides the orchestration of failover or fallback activity. Moreover, it looks like Azure DRaaS is going to be offered by service providers as well as private companies. Currently, Azure’s DRaaS has no support for SAN/NAS replication but they are working with vendors to supply an SRM-like API to provide this.
  • Hyper-V Replica changes – Replica support has been changed from a single fixed asynchronous replication interval (5 minutes) to being able to select one of 3 intervals: 15 seconds; 5 minutes; or 30 minutes.
  • Storage Spaces Automatic Tiering – With SSDs and regular rotating disk in your DAS (or JBOD) configuration , Windows Server 2012 R2 supports automatic storage tiering. At Spaces configuration time one dedicates a certain portion of SSD storage to tiering.  There is a scheduled Windows Server 2012 task which is then used to scan the previous periods file activity and identify which file segments (=1MB in size) that should be on SSD and which should not. Then over time file segments are moved to an  appropriate tier and then, performance should improve.  This only applies to file data and files can be pinned to a particular tier for more fine grained control.
  • Storage Spaces Write-Back cache – Another alternative is to dedicate a certain portion of SSDs in a Space to write caching. When enabled, writes to a Space will be cached first in SSD and then destaged out to rotating disk.  This should speed up write performance.  Both write back cache and storage tiering can be enabled for the same Space. But your SSD storage must be partitioned between the two. Something about funneling all write activity to SSDs just doesn’t make sense to me?!
  • Storage Spaces dual parity – Spaces previously supported mirrored storage and single parity but now also offers dual parity for DAS.  Sort of like RAID6 in protection but they didn’t mention the word RAID at all.  Spaces dual parity does have a write penalty (parity update) and Microsoft suggests using it only for archive or heavy read IO.
  • SMB3.1 performance improvements of ~50% – SMB has been on a roll lately and R2 is no exception. Microsoft indicated that SMB direct using a RAM DISK as backend storage can sustain up to a million 8KB IOPS. Also, with an all-flash JBOD, using a mirrored Spaces for backend storage, SMB3.1 can sustain ~600K IOPS.  Presumably these were all read IOPS.
  • SMB3.1 logging improvements – Changes were made to SMB3.1 event logging to try to eliminate the need for detail tracing to support debug. This is an ongoing activity but one which is starting to bear fruit.
  • SMB3.1 CSV performance rebalancing – Now as one adds cluster nodes,  Cluster Shared Volume (CSV) control nodes will spread out across new nodes in order to balance CSV IO across the whole cluster.
  • SMB1 stack can be (finally) fully removed – If you are running Windows Server 2012, you no longer need to install the SMB1 stack.  It can be completely removed. Of course, if you have some downlevel servers or clients you may want to keep SMB1 around a bit longer but it’s no longer required for Server 2012 R2.
  • Hyper-V Live Migration changes – Live migration can now take advantage of SMB direct and its SMB3 support of RDMA/RoCE to radically speed up data center live migration. Also, Live Migration can now optionally compress the data on the current Hyper-V host, send compressed data across the LAN and then decompress it at target host.  So with R2 you have three options to perform VM Live Migration traditional, SMB direct or compressed.
  • Hyper-V IO limits – Hyper-V hosts can now limit the amount of IOPS consumed by each VM.  This can be hierarchically controlled providing increased flexibility. For example one can identify a group of VMs and have a IO limit for the whole group, but each individual VM can also have an IO limit, and the group limit can be smaller than the sum of the individual VM limits.
  • Hyper-V supports VSS backup for Linux VMs – Windows Server 2012 R2 has now added support for non-application consistent VSS backups for Linux VMs.
  • Hyper-V Replica Cascade Replication – In Windows Server 2012, Hyper V replicas could be copied from one data center to another. But now with R2 those replicas at a secondary site can be copied to a third, cascading the replication from the first to the second and then the third data center, each with their own replication schedule.
  • Hyper-V VHDX file resizing – With Windows Server 2012 R2 VHDX file sizes can now be increased or reduced for both data and boot volumes.
  • Hyper-V backup changes – In previous generations of Windows Server, Hyper-V backups took two distinct snapshots, one instantaneously and the other at quiesce time and then the two were merged together to create a “crash consistent” backup. But with R2, VM backups only take a single snapshot reducing overhead and increasing backup throughput substantially.
  • NVME support – Windows Server 2012 R2 now ships with a Non-Volatile Memory Express (NVME) driver for PCIe flash storage.  R2’s new NVME driver has been tuned for low latency and high bandwidth and can be used for non-clustered storage spaces to improve write performance (in a Spaces write-back cache?).
  • CSV memory read-cache – Windows Server 2012 R2 can be configured to set aside some host memory for a CSV read cache.  This is different than the Spaces Write-Back cache.  CSV caching would operate in conjunction with any other caching done at the host OS or elsewhere.

That’s about it. Some of the MVPs had a preview of R2 up in Redmond, but all of this was to be announced in TechEd, New Orleans, this week.


Image: Microsoft TechEd by BetsyWeber

EMCworld 2013 Day 2

IMG_1382The first session of the day was with  Joe Tucci EMC Chairman and CEO.  He talked about the trends transforming IT today. These include Mobile, Cloud, Big Data and Social Networking. He then discussed  IDC’s 1st, 2nd and 3rd computing platform framework where the first was mainframe, the second was client-server and the third is mobile. Each of these platforms had winers and losers.  EMC wants definitely to be one of the winners in the coming age of mobile and they are charting multiple paths to get there.

Mainly they will use Pivotal, VMware, RSA and their software defined storage (SDS) product to go after the 3rd platform applications.  Pivotal becomes the main enabler to help companies gain value out of the mobile-social networking-cloud computing data deluge.  SDS helps provide the different pathways for companies to access all that data. VMware provides the software defined data center (SDDC) where SDS, server virtualization and software defined networking (SDN) live, breathe and interoperate to provide services to applications running in the data center.

Joe started talking about the federation of EMC companies. These include EMC, VMware, RSA and now Pivotal. He sees these four brands as almost standalone entities whose identities will remain distinct and seperate for a long time to come.

Joe mentioned the internet of things or the sensor cloud as opening up new opportunities for data gathering and analysis that dwarfs what’s coming from mobile today. He quoted IDC estimates that says by 2020 there will be 200B devices connected to the internet, today there’s just 2 to 3B devices connected.

Pivotal’s debut

Paul Maritz, Pivotal CEO got up and took us through the Pivotal story. Essentially they have three components a data fabric, an application development fabric and a cloud fabric. He believes the mobile and internet of things will open up new opportunities for organizations to gain value from their data wherever it may lie, that goes well beyond what’s available today. These activities center around consumer grade technologies  which 1) store and reason over very large amounts of data; 2) use rapid application development; and 3) operate at scale in an entirely automated fashion.

He mentioned that humans are a serious risk to continuous availability. Automation is the answer to the human problem for the “always on”, consumer grade technologies needed in the future.

Parts of Pivotal come from VMware, Greenplum and EMC with some available today in specific components. However by YE they will come out with Pivotal One which will be the first framework with data, app development and cloud fabrics coupled together.

Paul called Pivotal Labs as the special forces of his service organization helping leading tech companies pull together the awesome apps needed for the technology of tomorrow, consisting of Extreme programming, Agile development and very technically astute individuals.  Also, CETAS was mentioned as an analytics-as-a-service group providing such analytics capabilities to gaming companies doing log analysis but believes there’s a much broader market coming.

IMG_1393Paul also showed some impressive numbers on their new Pivotal HD/HAWQ offering which showed it handled many more queries than Hive and Cloudera/Impala. In essence, parts of Pivotal are available today but later this year the whole cloud-app dev-big data framework will be released for the first time.

IMG_1401Next up was a media-analyst event where David Goulden, EMC President and COO gave a talk on where EMC has come from and where they are headed from a business perspective.

Then he and Joe did a Q&A with the combined media and analyst community.  The questions were mostly on the financial aspects of the company rather than their technology, but there will be a more focused Q&A session tomorrow with the analyst community.

IMG_1403 Joe was asked about Vblock status. He said last quarter they announced it had reached a $1B revenue run rate which he said was the fastest in the industry.  Joe mentioned EMC is all about choice, such as Vblock different product offerings, VSpex product offerings and now with ViPR providing more choice in storage.

Sometime today Joe had mentioned that they don’t really do custom hardware anymore.  He said of the 13,000 engineers they currently have ~500 are hardware engineers. He also mentioned that they have only one internally designed ASIC in current shipping product.

Then Paul got up and did a Q&A on Pivotal.  He believes there’s definitely an opportunity in providing services surrounding big data and specifically mentioned CETAS as offering analytics-as-a-service as well as Pivotal Labs professional services organization.  Paul hopes that Pivotal will be $1B revenue company in 5yrs.  They already have $300M so it’s well on its way to get there.

IMG_1406Next, there was a very interesting media and analyst session that was visually stimulating from Jer Thorp, co-founder of The Office for Creative Research. And about the best way to describe him is he is a data visualization scientist.

IMG_1409He took some NASA Kepler research paper with very dry data and brought it to life. Also he did a number of analyzes of public Twitter data and showed twitter user travel patterns, twitter good morning analysis, twitter NYT article Retweetings, etc.  He also showed a video depicting people on airplanes around the world. He said it is a little known fact but over a million people are in the air at any given moment of the day.

Jer talked about the need for data ethics and an informed data ownership discussion with people about the breadcrumbs they leave around in the mobile connected world of today. If you get a chance, you should definitely watch his session.IMG_1410

Next Juergen Urbanski, CTO T-Systems got up and talked about the importance of Hadoop to what they are trying to do. He mentioned that in 5 years, 80% of all new data will land on Hadoop first.  He showed how Hadoop is entirely different than what went before and will take T-Systems in vastly new directions.

Next up at EMCworld main hall was Pat Gelsinger, VMware CEO’s keynote on VMware.  The story was all about Software Defined Data Center (SDDC) and the components needed to make this happen.   He said data was the fourth factor of production behind land, capital and labor.

Pat said that networking was becoming a barrier to the realization of SDDC and that they had been working on it for some time prior to the Nicera acquisition. But now they are hard at work merging the organic VMware development with Nicera to create VMware NSX a new software defined networking layer that will be deployed as part of the SDDC.

Pat also talked a little bit about how ViPR and other software defined storage solutions will provide the ease of use they are looking for to be able to deploy VMs in seconds.

Pat demo-ed a solution specifically designed for Hadoop clusters and was able to configure a hadoop cluster with about 4 clicks and have it start deploying. It was going to take 4-6 minutes to get it fully provisioned so they had a couple of clusters already configured and they ran a pseudo Hadoop benchmark on it using visual recognition and showed how Vcenter could be used to monitor the cluster in real time operations.

Pat mentioned that there are over 500,000 physical servers running Hadoop. Needless to say VMware sees this as a prime opportunity for new and enhanced server virtualization capabilities.

That’s about it for the major keynotes and media sessions from today.

Tomorrow looks to be another fun day.