University of Manchester fires up world’s largest neuromorphic computer

Read an article the other day about SpiNNaker, the University of Manchester’s neuromorphic supercomputer (see Live Science Article: Worlds largest supercomputer brain…). There’s also a wikipedia page on SpiNNaker and a SpiNNaker project page.


SpiNNaker is part of the European Union Human Brain Project (HBP), Brain Simulation Program.

SpiNNaker supercomputing hardware

(Most of the following information is from the SpiNNaker project home page and SpiNNaker architectural overview page.)

The system has 1 million ARM9 (968) cores and ~7TB of memory, with each core emulating 1000 spiking neurons. With this amount of computing power, it should be able to emulate a 1B (1 billion, 10^9) neuron brain (region).

The system will consist of 1200 PCBs with each PCB containing a 48 chip array and associated networking hardware & memory. Each node contains a SpiNNaker chip with its 18 ARM9 cores.

Each node has two chips stitch bonded together on top of one another. The bottom consists of the 18-ARM9 cores and the top the double DDR memory and networking layer.

Total bisectional networking bandwidth is 5 B packets/second with each packet consisting of 5 or 9 bytes of data.

SpiNNaker operates on 1W per chip or 90KW of power to run the entire machine. Given that each chip is 18 cores and each core is 1000 neurons, this means each neuron simulation takes about 55.5µW of power to run.

You can deploy a single board as IoT solution but @ ~48W per board it may be be too energy consumptive for IoT.

SpiNNaker supercomputing software

According to the home page and the Live Science article, SpiNNaker is intended to be used to model critical segments of the human brain such as the  basal ganglia brain area for the EU HBP brain simulation program.

The system architecture has three tiers, a host machine (layer) which communicates with the monitor layer to start and monitor application execution and uses “ybug” to communicate,  a monitor core (layer) which interacts with ybug at the host and uses “scamp” to communicate with the application processors, and the application processors (layer) consisting of the ARM cores, memory and packet networking hardware which runs the  SpiNNaker Application Runtime Kernel (sark).

Applications which run on sark can consist of spiking neural networks or multi-layer perceptrons (MLP), classical deep learning neural networks.

  • MLP applications use back propagation and a training and inference phases, familiar to any deep learning application and uses a fixed neural network topology.
  • Spiking neural network applications use ongoing learning so there’s no training or inference phases (it’s always learning), use a variable network topology (reconfiguring the ARM core-packet network) and currently supports the PyNN spiking neural network simulator.

Unfortunately most of the links in the SpiNNaker project pages referring to PyNN spiking networking applications are broken. But PyNN is a Python based spiking neural network simulator that can run on a number of different hardware platforms (including sark/SpiNNaker).

Most of the AI groups I’ve talked with mention PyTorch or TensorFlow as AI frameworks of choice these days. But it’s unclear to me whether these two support spiking neural network generation/simulation.

If you want to learn more about programming SpiNNaker please check out their Software for SpiNNaker wiki page.


As you may recall, a homo sapiens brain has an estimated 16B to 86B neurons in its average cerebral cortex (see wikipedia “animals listed by neuron count” article, for low estimate, EU’s HBP Brain Simulation page, for high estimate), which puts SpiNNaker today, at about the equivalent of less than a average tufted capuchin cerebral cortex (@1.2B neurons).

Given the above and with SpiNNaker @1B neurons, we are only  4 to 7 generations away from human equivalence. That means we have at most ~14 years left before a 128B spiking neuronal simulation machine is available.

But SpiNNaker today is based on ARM9 cores and ARM11 cores already exist. So, if they redesigned/reimplemented the chip today, it would already be 2X the core count. aake that human equivalence is only a max of 12 years away.

The mean estimate for AGI (artificial general intelligence) seems to be 2040-2050 (see wikipedia Technological Singularity article). But given what University of Manchester’s SpiNNaker is capable of doing today, I don’t think we have that long to wait.

Photo Credits: All photos/charts above are from the SpiNNaker Project pages at the University of Manchester website

Screaming IOP performance with StarWind’s new NVMeoF software & Optane SSDs

Was at SFD17 last week in San Jose and we heard from StarWind SAN (@starwindsan) and their latest NVMeoF storage system that they have been working on. Videos of their presentation are available here. Starwind is this amazing company from the Ukraine that have been developing software defined storage.

They have developed their own NVMe SPDK for Windows Server. Intel doesn’t currently offer SPDK for Windows today, so they developed their own. They also developed their own initiator (CentOS Linux) for NVMeoF. The target system was a multicore server running Windows Server with a single Optane SSD that they used to test their software.

Extreme IOP performance consumes cores

During their development activity they tested various configurations. At the start of their development they used a Windows Server with their NVMeoF target device driver. With this configuration and on a bare metal server, they found that they could max out the Optane SSD at 550K 4K random write IOPs at 0.6msec to a single Optane drive.

When they moved this code directly to run under a Hyper-V environment, they were able to come close to this performance at 518K 4K write IOPS at 0.6msec. However, this level of IO activity pegged 100% of 8 cores on their 40 core server.

More IOPs/core performance in user mode

Next they decided to optimize their driver code and move as much as possible into user space and out of kernel space, They continued to use Hyper-V. With this level off code, they were able to achieve the same performance as bare metal or ~551K 4K random write IOP performance at the 0.6msec RT and 2.26 GB/sec level. However, they were now able to perform only pegging 2 cores. They expect to release this initiator and target software in mid October 2018!

They converted this functionality to run under ESX/VMware and were able to see much the same 2 cores pegged, ~551K 4K random write IOPS at 0.6msec RT and 2.26 GB/sec. They will have the ESXi version of their target driver code available sometime later this year.

Their initiator was running CentOS on another server. When they decided to test how far they could push their initiator, they were able to drive 4 Optane SSDs at up to ~1.9M 4K random write IOP performance.

At SFD17, I asked what they could have done at 100 usec RT and Max said about 450K IOPs. This is still surprisingly good performance. With 4 Optane SSDs and consuming ~8 cores, you could achieve 1.8M IOPS and ~7.4GB/sec. Doubling the Optane SSDs one could achieve ~3.6M IOPS, with sufficient initiators and target cores with ~14.8GB/sec.

Optane based super computer?

ORNL Summit super computer, the current number one supercomputer in the world, has a sustained throughput of 2.5 TB/sec over 18.7K server nodes. You could do much the same with 337 CentOS initiator nodes, 337 Windows server nodes and ~1350 Optane SSDs.

This would assumes that Starwind’s initiator and target NVMeoF systems can scale but they’ve already shown they can do 1.8M IOPS across 4 Optane SSDs on a single initiator server. Aand I assume a single target server with 4 Optane SSDs and at least 8 cores to service the IO. Multiplying this by 4 or 400 shouldn’t be much of a concern except for the increasing networking bandwidth.

Of course, with Starwind’s Virtual SAN, there’s no data management, no data protection and probably very little in the way of logical volume management. And the ORNL Summit supercomputer is accessing data as files in a massive file system. The StarWind Virtual SAN is a block device.

But if I wanted to rule the supercomputing world, in a somewhat smallish data center, I might be tempted to put together 400 of StarWind NVMeoF target storage nodes with 4 Optane SSDs each. And convert their initiator code to work on IBM Spectrum Scale nodes and let her rip.


New website monetization approaches

Historically, websites have made money by selling wares, services or advertising. In the last two weeks it seems like two new business models are starting to emerge. One more publicly supported and the other less publicly supported.

Europe’s new copyright law

According to an article I read recently (This newly approved European copyright law might break the Internet), Article 11 of Europe’s new Copyright Directive (not quite law yet) will require search engines, news aggregators and other users of Internet content to pay a “link tax” to copyright holders of anything they link to. As a long time blogger, podcaster and content provider, I find this new copyright policy very intriguing.

The article proposes that this will bankrupt small publishers as larger ones will charge less for the traffic. But presently, I get nothing for links to my content. And, I’d be delighted to get any amount – in fact I’d match any large publishers link tax amount that the market demands.

But my main concern is the impact this might have on site traffic. If aggregators pay a link tax, why would they want to use content that charges any tax. Yes at some point aggregators need content. But there are many websites full of content, certainly there would be some willing to forego tax fees for more traffic.

I also happen to be a copyright user. Most of my blog posts are from articles I read on the web. I usually link to an article in the 1st one or two paragraphs (see above and below) of a post and may refer (and link) to more that go deeper into a subject. Will I have to pay a link tax to the content owner?

How much of a link tax is anyone’s guess. I’m not sure it would amount to much. But a link tax, if done judiciously might even raise the quality of the content on the web.

Browser’s of the world, lay down your blockchains

The second article was a recent research paper (Digging into browser based crypto mining). Researchers at RWTH Aachen University had developed a new method to associate mined blocks to mining pools as a way to unearth browser-based mined crypto coins. With this technique they estimated that 1.8% of all Monero coins were mined by CoinHive using participant browsers to mine the coin or ~$250K/month from browser mining.

I see this as steeling compute power. But with that much coin being generated, it might be a reasonable way for an honest website to make some cash from people browsing their web pages. The browsing party would need to be informed of the mining operation in the page’s information, sort of like “we use cookies” today.

Just think, someone creates a WP plugin to do ETH mining and when activated, a WP website pops up a message that says “We mine coins while you browse – OK?”.

In another twist perhaps the websites could share the ETH mined on their browser with the person doing the browsing, similar to airline/hotel travel awards. Today most travel is done on corporate dime, but awards go to the person doing the traveling. Similarly, employees could browse using corporate computers but they would keep a portion of the ETH that’s mined while they browse away… Sounds like a deal.

Other monetization approaches

We’ve tried Google AdSense and other advertising but it only generated pennies a month. So, it wasn’t worth it.

We also sell research and occasionally someone buys some (see SCI Research Shop). And I do sell services but not through my website.


Not sure a link tax will fly. It would be a race to the bottom and anyone that charged a tax would suffer from less links until they decided to charge a $0 link tax.

Maybe if every link had a tax associated with it, whether the site owner wanted it or not there could be a level playing field. Recording, paying/receiving and accounting for all these link tax micro payments would be another nightmare altogether.

But a WP plugin, that announces and mines crypto coins with a user’s approval and splits the profit with them might work. Corporate wouldn’t like it but employees would just be browsing websites, where’s the harm in that.

Browse a website and share the mined crypto coin with site owner. Sounds fine to me.

Photo Credit(s): Strasburg – European Parliament|Giorgio Barlocco

Crypto News Daily – Telegram cancels ICO…

Photo of Bitcoin, Etherium and Litecoin|QuoteInspector

AI processing at the edge

Read a couple of articles over the past few weeks (TechCrunch: Google is making a fast, specialized TPU chip for edge devices … and IEEE Spectrum: Two startups use processing in flash for AI at the edge) about chips for AI at the IoT edge.

The two startups, Syntiant and Mythic, are moving to analog only or analog-digital solutions to provide AI processing needed at the edge while Google is taking their TPU technology to the edge.  We have written about Google’s TPU before (see: TPU and hardware vs. software  innovation (round 3) post).

The major challenge in AI processing at the edge is power consumption. Both  startups attack the power problem by using flash and other analog circuitry to provide power efficient compute.

Google attacked the power problem with their original TPU by reducing computational precision from 64- to 8-bits. By reducing transistor counts, they lowered power requirements proportionally.

AI today is based on neural networks (NN), that connect simulated neurons via simulated synapses with weights attached to indicate whether to boost or decrease the signal being transmitted. AI learning is done by setting those weights and creating the connections between simulated neurons and the synapses.  So learning is setting weights and establishing connections. Actual inferences (using AI to do something) is a process of exciting input simulated neurons/synapses and letting the signal flow through the NN with each weight being used to determine output(s).

AI with standard compute

The problem with doing AI learning or inferencing with normal CPUs or even CUDAs is that the NN does thousands if not millions of  multiplication-accumulation actions at each simulated synapse-neuron connection. Doing all these multiplication-accumulation takes power. CPUs and CUDAs can do these sorts of operations on 32 or 64 bit numbers or even floating point but it still takes power.

AI processing power

AI processing power is measured in trillions of (accumulate-multiply) operations per second per watt (TOPS/W). Mythic believes it can perform 4 TOPS/W and Syntiant says it can do 20 TOPS/W. In comparison, the NVIDIA Volta V100 can do about 0.4 TOPS/W (according to the article). Although  comparing Syntiant-Mythic TOPS to NVIDIA TOPS is a little like comparing apples to oranges.

A current Intel Xeon Platinum 8180M (2.5Ghz, 28 Core processors, 205 W) can probably do (assuming one multiplication-accumulation per hertz) about 2.5 Billion X 28 Cores = 70 Billion Ops Second/205 W or 0.3 GOPS/W (source: Platinum 8180M Data sheet).

As for Google’s TPU TOPS/W, TPU2 is rated at 45 GFLOPS/chip and best guess for power consumption is between 160W and 200W, let’s say 180W. With power at that level, TPU2 should hit 0.25 GFLOPS/W.  TPU3 is coming out with 8X the power but it uses water cooling (read LOTS MORE POWER).

Nonetheless, it appears that Mythic and Syntiant are one to two orders of magnitude better than the best that NVIDIA and TPU2 can do today and many orders of magnitude better than Intel X86.

Improving TOPS/W

Using NAND, as an analog memory to read, write and hold  NN weights is an easy way to reduce power consumption. Combine that with  analog circuitry that can do multiplication and addition with those flash values and you have a AI NN processor. This way you reduce the need to hold weights in memory and do compute in registers by collapsing both compute and memory into the same componentry.

The major difference between Syntiant and Mythic seems to be the amount of analog circuitry they use. Mythic seems to relegate the analog circuitry to an accelerator while Syntiant has a more extensive use of analog circuitry throughout their chip. Probably why it can perform 5X the TOPS/W of Mythic’s IPU.

IBM and others have been working on neuromorphic chips some of which are analog based and others which are all digital based. We’ve written extensively on IBM and some on MIT’s approaches (for the latest on IBM see: More power efficient deep learning through IBM and PCM, and for MIT see: MIT builds an analog synapse chip) and follow the links there to learn more.


Special purpose AI hardware is emerging from the labs and finally reaching reality. IBM R&D has been playing with it for a long time. Google is working on TPU3 so there’s no stopping them. And startups are seeing an opening and are taking everyone on. Stay tuned, were in for a good long ride before the someone rises above the crowd and becomes the next chip giant.



Photo Credit(s): TechCrunch  Google is making a fast, specialized TPU chip for edge devices … article

Introduction to Digital Design Verification at Mythic, Article

Images from Google Cloud Platform Blog on the TPU

Two startups use processing in flash for AI at the edge, IEEE Spectrum article courtesy of Mythic

Hitachi Vantara HCP, hits it out of the park #datacenternext

We talked with Hitachi Vantara this past week at a special Tech Field Day extra event (see videos here). This was an all day affair and was a broad discussion of Hitachi’s infrastructure portfolio.

There was much of interest in the days session but one in particular caught my eye and that was the session on Hitachi Vantara’s Content Platform (HCP).

Hitachi has a number of offerings surrounding their content platform, including:

  • HCP, on premises object store:
  • HCP Anywhere, enterprise file synch and share using HCP,
  • HCP Content Intelligence, compliance and content search for HCP object storage, and
  • HCP Data Ingestor, file gateway to HCP object storage.

I already knew about these  offerings but had no idea how successful HCP has been over the years. inng to Hitachi Vantara, HCP has over 4000 installations worldwide with over 2000 customers and is currently the number 1 on premises, object storage solution in the world.

For instance, HCP is installed in 4 out of the 5 largest banks, insurance companies, and TelCos worldwide. HCP Anywhere has over a million users with over 15K in Hitachi alone.  Hitachi Vantara has some customers using HCP installations that support 4000-5000 object ingests/sec.

HCP software supports geographically disbursed erasure coding, data compression, deduplication, and encryption of customer object data.

HCP development team has transitioned to using micro services/container based applications and have developed their Foundry Framework to make this easier. I believe the intent is to ultimately redevelop all HCP solutions using Foundry.

Hitachi mentioned a couple of customers:

  • US Government National Archives which uses HCP behind Pentaho to preserve presidential data and metadata for 100 years, and uses all open APIs to do so
  • UK Rabo Bank which uses HCP to support compliance monitoring across a number of data feeds
  • US  Ground Support which uses Pentaho, HCP, HCP Content Intelligence and HCP Anywhere  to support geospatial search to ascertain boats at sea and what they are doing/shipping.

There’s a lot more to HCP and Hitachi Vantara than summarized here and I would suggest viewing the TFD videos and check out the link above for more information.


Want to learn more, see these other TFD bloggers posts:

Hitachi is reshaping its IT division by Andrew Mauro (@Andrew_Mauro)

Western Digital at SFD15: ActiveScale object storage

Phill Bullinger and his staff from Western Digital presented at Storage Field Day 15 (SFD15) on a number of their enterprise products including Tegile and IntelliFlash but the one that caught my interest was their ActiveScale object store acquired from Amplidata back in 2015.

ActiveScale is an onprem, object storage system that provides cloud-like  economics for customer data.

ActiveScale Hardware

ActiveScale systems can both scale up and scale out within a single site. ActiveScale systems have both  storage and system nodes. Storage nodes perform erasure coding and System nodes are control points and metadata managers for the object store.

ActiveScale comes in two appliance configurations that contain both storage and system nodes and storage required.  The two appliances are:

  • ActiveScale P100 is a 7U 720TB pod system and A full rack of P100s can read 8GB/sec and can have 17-9s data availability. The P100 can scale up to 2.1PB in a single rack and up to 18PB in the same namespace. The P100 is a higher performing solution with better performing storage and system nodes
  • ActiveScale X100 is a 42U rack scale solution that holds up to 588 12TB drives or 5.8PB per rack. The X100 can scale up to 9 racks or 52PB in the same namespace. The X100 is a denser configuration with only 6 storage nodes and as such, has a better $/GB than the P100 above.

As WDC is both the supplier of the ActiveScale appliance and a supplier of disk storage they can be fairly aggressive with pricing on appliance systems.

Data integrity in ActiveScale

They make a point of saying that ActiveScale object metadata and data are stored separately. By separating data and metadata, they claim to be  more resilient to system failures. Object metadata is 3 way replicated, in a replicated database, residing in system nodes. Other object systems often store metadata and object data in the same way.

Object data can be erasure coded. That is, object data is chunked, erasure coding protected and then spread across multiple disk drives for data protection. ActiveScale erasure coding is called BitSpread. With BitSpread customers identify the number of disk drives to spread object data across and the number of drive failures the system should recover from without data loss.

A typical BitSpread configuration splits object data into 18 chunks and spreads these chunks across storage columns. A storage column is from 6-18 storage nodes. There’s no pre-allocated space in BitSpread. Object data chunks are allocated to disk storage based on current capacity and performance of the system, within redundancy constraints.

In addition, ActiveScale has a background task called BitDynamics that scans  erasure coded chunks and does a mathematical health check on the object data. If a chunk is bad, the object data chunk can be recovered and re-erasure coded back to proper health.

WDC performance testing shows that BitDynamics has 0 performance degradation when performing re-erasure coding. Indeed, they took out 98 drives in an ActiveScale cluster and BitDynamics re-coded all that data onto other disk drives and detected no performance impact. No indication how long  re-encoding 98 disk drives of data took nor the % of object store capacity utilization at the time of the test but presumably there’s a report someplace to back this up

Unlike many public cloud based object storage systems, ActiveScale is strongly consistent. That is object puts (writes) are not responded back to the entity doing the put,  until the object metadata and object data are properly and safely recorded in the object store.

ActiveScale also supports 3 site erasure coding. GeoSpread is their approach to erasure coding across sites. In this case, object metadata is replicated across 3 system nodes across the sites. Object data and erasure coded information is split into 20 chunks which are then spread across the three sites.  This way if any one site goes down, the other two sites have sufficient metadata, object data chunks and erasure coded information to reconstruct the data.

ActiveScale 5.2 now supports asynch replication. That is any one ActiveScale cluster can replicate to any other ActiveScale cluster located continent distances away.

Unclear how GeoSpread and asynch replication would interact together, but my guess is that each of the 3 GeoSpread sites could be asynchronously replicated to 3 other sites for maximum redundancy.

Both GeoSpread and ActiveScale replication impact performance,  depending on how far the sites are from one another and the speed and bandwidth of the links between sites.

ActiveScale markets

ActiveScale’s biggest market is media and entertainment (M&E), mostly used for media archive or tape replacement/augmentation. WDC showed one customer case study for the Montreaux Jazz Festival, which migrated 49 years of performance videos up to ActiveScale and can now stream any performance, on request, without delay. Montreax media is GeoSpread across 3 sites in France. Another option is to perform transcoding on the object media in realtime and stream the transcoded media.

Another large market is Bio/Life Sciences. Medical & biological scanners are transitioning to higher resolution scans which take more data space. And this sort of medical information needs to be kept a long time

Data analytics on ActiveScale

One other emerging market is data analytics. With the new S3A (S3 adapter), Hadoop clusters can now support object storage as a 2nd tier. One problem with data analytics is that they have lots of data and storing it in triplicate, costs an awful lot.

In big data world, datasets can get very large very quickly. Indeed PB sizes data sets aren’t that unusual. And with triple replication (in native HDFS). When HDFS runs out of space you have to delete data. Before S3A, the only way you could increase storage you had to scale out (with compute and storage and networking) in order to add capacity.

Using Hadoop’s S3A, ActiveScale’s can provide cold archive for data analytics.  From a Hadoop user/application perspective, S3A ActiveScale storage looks like just another directory under HDFS (Hadoop Data File System). You can run MapReduce or other Hadoop application directly against object buckets. But a more realistic approach is to move inactive or cold data from an disk resident HDFS directory to a S3A directory

HDFS and MapReduce are tightly coupled and were designed to have data close to where computation happens. So,  as long as the active data or working set data is on HDFS disk storage or directly in memory the rest of the (inactive) data could all be placed on S3A object storage. Inactive data is normally historical data no longer being actively analyzed while newer data would be actively analyzed. Older, inactive data can be manually or automatically archived off to S3A. With HIVE you can partition your database to have active data in HDFS disk storage and inactive data in S3A.

Another approach is if the active, working set data can all fit directly in memory then the data can reside on S3A object storage. This way the data is read from S3A storage into memory, analyzed there and output be done back to object store or HDFS disk. Because the data is only read (loaded) once, there’s only a minimal performance penalty to use S3A storage.

Western Digital is an active contributor to Hadoop S3A and have recently added performance improvements to S3A, such as better caching, partial object reading, and core XML performance tuning options.

If your interested in learning more about Western Digital ActiveScale, check out the videos referenced earlier and their website.

Also you may be interested in these other posts on the WD sessions at SFD15:

The A is for Active, The S is for Scale by Dan Firth (@PenguinPunk)


A new way to compute

I read an article the other day on using using random pulses rather than digital numbers to compute with, see Computing with random pulses promises to simplify circuitry and save power, in IEEE Spectrum. Essentially they encode a number as a probability in a random string of bits and then use simple logic to compute with. This approach was invented in the early days of digital logic and was called stochastic computing.

Stochastic numbers?

It’s pretty easy to understand how such logic can work for fractions. For example to represent 1/4, you would construct a bit stream that had one out of every four bits, on average, as a 1 and the rest 0’s. This could easily be a random string of bits which have an average of 1 out of every 4 bits as a one.

A nice result of such a numerical representation is that it easily results in more precision as you increase the length of the bit stream. The paper calls this progressive precision.

Progressive precision helps stochastic computing be more fault tolerant than standard digital logic. That is, if the string has one bit changed it’s not going to make that much of a difference from the original string and computing with an erroneous number like this will probably result in similar results to the correct number.  To have anything like this in digital computation requires parity bits, ECC, CRC and other error correction mechanisms and the logic required to implement these is extensive.

Stochastic computing

2 bit multiplier

Another advantage of stochastic computation and using a probability  rather than binary (or decimal) digital representation, is that most arithmetic functions are much simpler to implement.


They discuss two examples in the original paper:

  • AND gate

    Multiplication – Multiplying two probabilistic bit streams together is as simple as ANDing the two strings.

  • 2 input stream multiplexer

    Addition – Adding two probabilistic bit strings together just requires a multiplexer, but you end up with a bit string that is the sum of the two divided by two.

What about other numbers?

I see a couple of problems with stochastic computing:,

  • How do you represent  an irrational number, such as the square root of 2;
  • How do you represent integers or for that matter any value greater than 1.0 in a probabilistic bit stream; and
  • How do you represent negative values in a bit stream.

I suppose irrational numbers could be represented by taking a near-by, close approximation of the irrational number. For instance, using 1.4 for the square root of two, or 1.41, or 1.414, …. And this way you could get whatever (progressive) precision that was needed.

As for integers greater than 1.0, perhaps they could use a floating point representation, with two defined bit strings, one representing the mantissa (fractional part) and the other an exponent. We would assume that the exponent rather than being a probability from 0..1.0, would be inverted and represent 1.0…∞.

Negative numbers are a different problem. One way to supply negative numbers is to use something akin to complemetary representation. For example, rather than the probabilistic bit stream representing 0.0 to 1.0 have it represent -0.5 to 0.5. Then progressive precision would work for negative numbers as well a positive numbers.

One major downside to stochastic numbers and computation is that high precision arithmetic is very difficult to achieve.  To perform 32 bit precision arithmetic would require a bit streams that were  2³² bits long. 64 bit precision would require streams that were  2**64th bits long.

Good uses for stochastic computing

One advantage of simplified logic used in stochastic computing is it needs a lot less power to compute. One example in the paper they use for stochastic computers is as a retinal sensor for in the body visual augmentation. They developed a neural net that did edge detection that used a stochastic front end to simplify the logic and cut down on power requirements.

Other areas where stochastic computing might help is for IoT applications. There’s been a lot of interest in IoT sensors being embedded in streets, parking lots, buildings, bridges, trucks, cars etc. Most have a need to perform a modest amount of edge computing and then send information up to the cloud or some edge consolidator intermediate

Many of these embedded devices lack access to power, so they will need to make do with whatever they can find.  One approach is to siphon power from ambient radio (see this  Electricity harvesting… article), temperature differences (see this MIT … power from daily temperature swings article), footsteps (see Pavegen) or other mechanisms.

The other use for stochastic computing is to mimic the brain. It appears that the brain encodes information in pulses of electric potential. Computation in the brain happens across exhibitory and inhibitory circuits that all seem to interact together.  Stochastic computing might be an effective way, low power way to simulate the brain at a much finer granularity than what’s available today using standard digital computation.


Not sure it’s all there yet, but there’s definitely some advantages to stochastic computing. I could see it being especially useful for in body sensors and many IoT devices.


Photo Credit(s):  The logic of random pulses

2 bit by 2 bit multiplier, By Sodaboy1138 (talk) (Uploads) – Own work, CC BY-SA 3.0, wikimedia

AND ANSI Labelled, By Inductiveload – Own work, Public Domain, wikimedia

2 Input multiplexor

A battery free implantable neural sensor, MIT Technology Review article

Integrating neural signal and embedded system for controlling a small motor, an IntechOpen article

Blockchains go mainstream…


I read an article a while back on Finland’s use of blockchain technology to provide bank accounts and identity services to immigrants (see  MIT TechReview article about Finland).

Blockchains were originally invented as a way of supporting financial transactions outside the current, government monitored, financial marketplace. With Finland’s experiment, the government is starting to use blockchains to support the unbanked and monitoring their financial activity – go figure.

Debit cards on blockchain

Finland’s using a Helsinki based startup MONI, to assign a MONI card, essentially a prepaid MasterCard, to all immigrants. An immigrant can use their MONI card to pay for anything online or in real life, use it as a direct deposit account or to receive and track the use of government assistance.

Underlying the MONI card is public blockchain technology. That is MONI  is not using normal credit card services to support it’s bank accounts, MONI money transfers are done through the use of public blockchains.

MONI accounts are essentially (crypto currency) wallets but used as a debit card. The user merely enters a series of numbers into web forms or uses their MONI card at a credit card terminals throughout Europe. Transferring money between MONI users anywhere in the World is also free and instantaneous.

Finland also sees an immutable record of all immigrant financial transactions,  that can be monitored to track immigrant (financial) integration into the country.

MONI is intending to make this service more broadly available. A MONI card account costs €2/month and MONI take’s a small cut out of each monetary transaction.

IDs on blockchain

I read another article the other day “Microsoft to implement blockchain-based ID system” in CoinTelegraph about using blockchains as a universal digital ID.

India has over the last decade, implemented a digital government ID using biometrics (see Aadhaar wikipedia article). Other countries have been moving to e-government where use of government services is implemented over the Internet (see EU article on eGovernment in Lithuania). Such eGovernment services depend on a digitized population registry.

Although it’s unclear whether Aadhaar and Lithuania make use of blockchain technology for their ID services, Microsoft’s definitely looking to blockchains to provide unique accounts/digital IDs to it’s population of users.

User signon’s has been a prevalent problem of the web for years. Each and every web and mobile App requires a person to signon to personalize their App. Nowadays, many Apps support using Google ID or Facebook ID for a single signon and there are other technologies being offered that provide similar services. Using a blockchain ID could easily support a single signon service.

The blockchain ID (wallet) public key could easily be used to encrypt an authentication transaction, identifying the App and the user. This authentication transaction would be processed by the blockchain digital ID service would use the private key to decrypt the transaction and use a backend ID App repository for the user to check to see that the user loging in, is the person that opened the account, acting as a sort of “proof of who you are”

Storage on blockchain

Filecoin and StorJ are storage providers that use blockchain services to allow others to use your local (or networked) storage to provide storage to the world.

A while back I had written about (free) peer to peer storage and compute services  (see my Free P2P cloud storage … post). But the problem was how do people benefit from hosting the P2P storage or compute. Filecoin and Storj solved this by paying in cryptocurrencies for storage hosted on your hardware.

Filecoin offers a storage auction and hosting service that anyone worldwide can log into and use. The data stored is encrypted end-to-end so that no one can see what’s being stored and the data is also erasure coded so that it  is protected and accessible even with having one or more hosting sites be offline.

Filecoin uses “proofs of storage“, “proofs of space”, “proofs of data possession“, and “proofs of retrievability” as a way to guarantee their storage service works properly. They also use chained “proofs of replication” as “proofs of spacetime” as service validation checks. Proofs of Replication are a way of insuring that storage providers are not deduplicating data copies and charging for non-deduped storage. (See Filecoin’s Proof of Replication paper for more info).

Storj looks somewhat similar to Filecoin, but without as much sophistication behind it.

Compute on blockchain

Ethereum was invented to support smart contracts that run on blockchain technology. IBM’s HyperLegder OpenLedger project (see our GreyBeardsOnStorga Podcast and RayOnStorage post on Hyperledger) is another example.

Smart contracts are essentially applications that run in a blockchains virtualized environment. Blockchain services are used to run an application and validate that’s it’s run only once. In some cases smart contracts use  external oracles to query as a way to verify something or some action has occurred outside the blockchain. Other oracles can be entirely digital entities that check on a particular commodity price, weather pattern, account value, etc. The oracle becomes a critical step in determining the go no go status of a smartcontract.

Advertisements vs. crypto mining

Salon, a news providing website, offers readers an option to see advertisements or to allow Salon to use their computer (browser) to mine crypto coins. (See Salon offers… article in CoinDesk).

I believe this offer is made when the website detects a viewer is using  ad blockers.


Tthe trend is clear, people, organizations and even governments are looking at blockchain technology to provide basic and advanced services around the world.

If anyone would is interested in providing a pre-paid Visa card via blockchains, please contact me. I’d like to help.

Now if I could just find my GPU’s at a decent price somewhere…

Speaking of advertising… RayOnStorage doesn’t use advertising. But blogging like this takes time and money. If anyone’s interested in helping fund this blog, please consider sending some BTC our way, even 0.0001 BTC would help.

Our BTC wallet address is:


Photo Credit(s): Blockchain and the public sector on

Unleash your design teams with single signon on

Understanding the difference between P2P and Client-server networks on LinkedIN

Blockgeek’s guide to smart contracts