A knowledge ark, the Arch project

Read an article last week on the Arch Mission Foundation project, which is a non-profit, organization that intends “to continuously preserve and disseminate human knowledge throughout time and space”.

The way I read this is they want to capture, preserve  and replicate all mankind’s knowledge onto (semi-)permanent media and store this information  at various locations around the globe and wherever we may go.

Interesting way to go about doing this. There are plenty of questions and considerations to capturing all of mankind’s knowledge.

Google’s way

 Google has electronically scanned every book in a number of library partners to help provide a searchable database of literature, check out the Google Books Library Project.

There’s over 40 library partners around the globe and the intent of the project was to digitize their collections. The library partners can then provide access to their digital copies. Google will provide full access to books in the public domain and will provide search results for all the rest, with pointers as to where the books can be found in libraries, purchased and otherwise obtained.

Google Books can be searched at Google Books. Last I heard they had digitized over 30M books from their library partners, which is pretty impressive since the Library of Congress has around 37M books. Google Books is starting to scan magazines as well.

Arch’s way

The intent is to create Arch’s (pronounced Ark’s) that can last billions of years. The organization is funding R&D into long lived storage technologies.

Some of these technologies include:

  • 5D laser optical data storage in quartz, I wrote about this before (see my 5D storage … post). Essentially, they are able to record two-tone scans of documents in transparent quartz that can last eons. Data is recorded in 5 dimensions, size of dot, polarity of dot  and 3 layers of dot locations through the media. 5D media lasts for 1000s of years.
  • Nickel ion-beam atomic scale storage, couldn’t find much on this online but we suppose this technology uses ion-beams to etch a nickel surface with nano-scale information.
  • Molecular storage on DNA molecules, I wrote about this before as well (see my DNA as storage… post) but there’s been plenty of research on this more recently. A group from Padua, IT  shows the way forward to use bacteria as a read/write head for DNA storage and there are claims that a gram of DNA could hold a ZB (zettabyte, 10**21 bytes) of data. For some reason Microsoft has been very active in researching this technology and plan to add it to Azure someday.
  • Durable space based flash drives, couldn’t find anything on this technology but assume this is some variant of NAND storage optimized for long duration.  Current NAND loses charge over time. Alternatively, this could be a version of other NVM storage, such as, MRAM, 3DX, ReRAM, Graphene Flash, and  Memristor all of which I have written about
  • Long duration DVD technology, this is sort of old school but there exists archive class WORM DVDs out and available on the market today, (see my post on M[illeniata]-Disc…).
  • Quantum information storage, current quantum memory lifetimes don’t much over exceed 180 seconds, but this is storage not memory. Couldn’t find much else on this, but it might be referring to permanent data storage with light.
M-Disc (c) 2011 Millenniata (from their website)
M-Disc (c) 2011 Millenniata (from their website)

They seem technology agnostic but want something that will last forever.

But what knowledge do they plan to store

In Arch’s FAQ they talk about open data sets like Wikipedia and the Internet Archive. But they have an interesting perspective on which knowledge to save. From an advanced future civilization perspective, they are probably not as interested in our science and technology but rather more interested in our history, art and culture.

They believe that science and technology should be roughly the same in every advanced civilization. But history, art and culture are going to be vastly different across different civilizations. As such, history, art and culture are uniquely valuable to some future version of ourselves or any other advanced scientific civilization.


Arch intends to have multiple libraries positioned on the Earth, on the Moon and Mars over time. And they are actively looking for donations and participation (see link above).

Although, I agree that culture, art and history will be most beneficial to any advanced civilization. But there’s always a small but distinct probability that we may not continue to exist as an advanced scientific civilization. In that case, I would think, science and technology would also be needed to boot strap civilization.

To the Wikipedia, I would add GitHub, probably Google Books, and PLOS as well as any other publicly available scientific or humanities journals that available.

And don’t get me started on what format to record the data with. Needless to say, out-dated formats are going to be a major concern for anything but a 2D scan of information after about ten years or so.

In any case, humanity and universanity needs something like this.

Photo Credit(s): The Arch Mission Foundation web page

Google Books Library search on Republic results

“Five dimensional glass disks …” from The Verge

M-disk web page

Atomristors, a new single (atomic) layer memristor

Read an article the other day about the “Atomristor: non-volatile resistance  switching in atomic sheets of transition metal dichalcogenides” (TMDs), an ACS publication. The article shows research that discovered an atomic sheet level version of a memristor. The device is an atomic sheet of TMD that is sandwiched between two (gold, silver or graphene) electrodes.

They refer to the device switching non-volatile resistance (NVR) from low to high or vice versa but from our perspective it could just as easily be considered a non-volatile device usable for memory, storage, or electronic circuitry.

Prior to this research, it was believed that such resistance switching could not be accomplished with single atomic, sub-nanometre (0.7nm) sized, sheet of material.

NVR atomristor technological properties

The researchers discovered that NVR switching can occur at different device temperatures, sheet areas, compliance current, voltage sweep rate, and layer thickness. In all five degrees of freedom were tested to show that  TMD atomristors had wide applicability and allowed for significant environmental and electronic variability.

Not only was the effect extremely versatile, the researchers identified multiple materials which could be used for the atomic sheet. In fact, TMD are a class of materials and they showed 4 different TMD materials that had the NVR effect.

Surprisingly, some TMD materials exhibited the NVR effect using unipolar voltages and some using bipolar voltages, and some could use both.

The researchers went a long way to showing that the NVR was due to the atomic sheet. In one instance they specifically used non-lithographic measures to fabricate the devices. This process utilized graphene manufacturing like methods to produce an atomic sheet ontop of gold foil and depositing another gold layer ontop of that.

But they also used standard fabrication techniques to build the atomristor devices as well. Using these different fabrication methods, they were able to show the NVR effect using different electrodes types, testing gold, silver, and graphene, all of which worked similarly.

The paper talked of using atomristors in a software defined radio, as a electronic circuit/cross bar switch, or as a memory/storage device. But they also indicated that it could easily be used in a neuromorphic computer as well, effectively simulating neuron like computations.

There’s much more information in the ACS article.

How does it compare to flash?

As compared to flash, atomristors NVR devices should be able to provide higher levels (bits per mm) of density. And due to the lower current (~1v) required for (bipolar) NVR setting, reading and resetting, there’s a lower probability of leakage of stored charges as they’re scaled down to nm sizes.

And of course it comes in 2d sheets, so it’s just as amenable to 3D arrays as NAND and 3DX is today. That means that as fabs start scaling 3D NAND up in layers, atomristor NVR devices should be able to follow their technology roadmap to be scaled up just as high.

Atomristor computers, storage or switch devices

Going from the “lab” to an IT shop is a multifaceted endeavour that takes a lot of time. There are many steps to needed to get to commercialization and many lab breakthroughs never make it that far because of complexity, economics, and other factors.

For instance, memristors were first proposed in 1971 and HP(E) researchers first discovered material that could produce the memristor effect in 2008. In March 2012, HRL fabricated the first memristor chip on CMOS. In Dec. 2017, >9 years later, at their Discover Conference, HPE showed off “The Machine”, a prototype of a memristor based computer to the public. But we are still waiting to see one on the market for sale.

That being said, memristor technologies didn’t exist before 2008, so the use of these devices in a computer took sometime to be understood. The fact that atomristors are “just” an extremely, thinner version of memristors should help it be get to market faster that original memristor technologies. But how much faster than 9-12 years is anyone’s guess.



Picture Credit(s): All graphics and pictures are from the article in ACS