Pure Storage surfaces

1 controller X 1 storage shelf (c) 2011 Pure Storage (from their website)
1 controller X 1 storage shelf (c) 2011 Pure Storage (from their website)

We were talking with Pure Storage last week, another SSD startup which just emerged out of stealth mode today.  Somewhat like SolidFire which we discussed a month or so ago, Pure Storage uses only SSDs to provide primary storage.  In this case, they are supporting a FC front end, with an all SSDs backend, and implementing internal data deduplication and compression, to try to address the needs of enterprise tier 1 storage.

Pure Storage is in final beta testing with their product and plan to GA sometime around the end of the year.

Pure Storage hardware

Their system is built around MLC SSDs which are available from many vendors but with a strategic investment from Samsung, currently use that vendor’s storage.  As we know, MLC has write endurance limitations but Pure Storage was built from the ground up knowing they were going to use this technology and have built their IP to counteract these issues.

The system is available in one or two controller configurations, with an Infiniband interconnect between the controllers, 6Gbps SAS backend, 48GB of DRAM per controller for caching purposes, and NV-RAM for power outages.  Each controller has 12-cores supplied by 2-Intel Xeon processor chips.

With the first release they are limiting the controllers to one or two (HA option) but their storage system is capable of clustering together many more, maybe even up to 8-controllers using the Infiniband back end.

Each storage shelf provides 5.5TB of raw storage using 2.5″ 256GB MLC SSDs.  It looks like each controller can handle up to 2-storage shelfs with the HA (dual controller option) supporting 4 drive shelfs for up to 22TB of raw storage.

Pure Storage Performance

Although these numbers are not independently verified, the company says a single controller (with 1-storage shelf) they can do 200K sustained 4K random read IOPS, 2GB/sec bandwidth, 140K sustained write IOPS, or 500MB/s of write bandwidth.  A dual controller system (with 2-storage shelfs) can achieve 300K random read IOPS, 3GB/sec bandwidth, 180K write IOPS or 1GB/sec of write bandwidth.  They also claim that they can do all this IO with an under 1 msec. latency.

One of the things they pride themselves on is consistent performance.  They have built their storage such that they can deliver this consistent performance even under load conditions.

Given the amount of SSDs in their system this isn’t screaming performance but is certainly up there with many enterprise class systems sporting over 1000 disks.  The random write performance is not bad considering this is MLC.  On the other hand the sequential write bandwidth is probably their weakest spec and reflects their use of MLC flash.

Purity software

One key to Pure Storage (and SolidFire for that matter) is their use of inline data compression and deduplication. By using these techniques and basing their system storage on MLC, Pure Storage believes they can close the price gap between disk and SSD storage systems.

The problems with data reduction technologies is that not all environments can benefit from them and they both require lots of CPU power to perform well.  Pure Storage believes they have the horsepower (with 12 cores per controller) to support these services and are focusing their sales activities on those (VMware, Oracle, and SQL server) environments which have historically proven to be good candidates for data reduction.

In addition, they perform a lot of optimizations in their backend data layout to prolong the life of MLC storage. Specifically, they use a write chunk size that matches the underlying MLC SSDs page width so as not to waste endurance with partial data writes.  Also they migrate old data to new locations occasionally to maintain “data freshness” which can be a problem with MLC storage if the data is not touched often enough.  Probably other stuff as well, but essentially they are tuning their backend use to optimize endurance and performance of their SSD storage.

Furthermore, they have created a new RAID 3D scheme which provides an adaptive parity scheme based on the number of available drives that protects against any dual SSD failure.  They provide triple parity, dual parity for drive failures and another parity for unrecoverable bit errors within a data payload.  In most cases, a failed drive will not induce an immediate rebuild but rather a reconfiguration of data and parity to accommodate the failing drive and rebuild it onto new drives over time.

At the moment, they don’t have snapshots or data replication but they said these capabilities are on their roadmap for future delivery.


In the mean time, all SSD storage systems seem to be coming out of the wood work. We mentioned SolidFire, but WhipTail is another one and I am sure there are plenty more in stealth waiting for the right moment to emerge.

I was at a conference about two months ago where I predicted that all SSD systems would be coming out with little of the engineering development of storage systems of yore. Based on the performance available from a single SSD, one wouldn’t need 100s of SSDs to generate 100K IOPS or more.  Pure Storage is doing this level of IO with only 22 MLC SSDs and a high-end, but essentially off-the-shelf controller.

Just imagine what one could do if you threw some custom hardware at it…


OCZ’s latest Z-Drive R4 series PCIe SSD

OCZ_Z-Drive_RSeries (from http://www.ocztechnology.com/ocz-z-drive-r4-r-series-pci-express-ssd.html)
OCZ_Z-Drive_RSeries (from http://www.ocztechnology.com/ocz-z-drive-r4-r-series-pci-express-ssd.html)

OCZ just released a new version of their enterprise class Z-drive SSD storage with pretty impressive performance numbers (up to 500K IOPS [probably read] with 2.8GB/sec read data transfer).


These new drives are bootable SCSI devices and connect directly to a server’s PCIe bus. They come in half height and full height card form factors and support 800GB to 3.2TB (full height) or 300GB to 1.2TB (half height) raw storage capacities.

OCZ also offers their Velo PCIe SSD series which are not bootable and as such, require an IO driver for each operating system. However, the Z-drive has more intelligence which provides a SCSI device and as such, can be used anywhere.

Naturally this comes at the price of additional hardware and overhead.   All of which could impact performance but given their specified IO rates, it doesn’t seem to be a problem.

Unclear how many other PCIe SSDs exist today that offer bootability but it certainly puts these drives in a different class than previous generation PCIe SSD such as available from FusionIO and other vendors that require IO drivers.


One concern with new Z-drives might be their use of MLC NAND technology.  Although OCZ’s press release said the new drives would be available in either SLC or MLC configurations, current Z-drive spec sheets only indicate MLC availability.

As  discussed previously (see eMLC & eSLC and STEC’s MLC posts), MLC supports less write endurance (program-erase and write cycles) than SLC NAND cells.  Normally the difference is on the order of 10X less before NAND cell erase/write failure.

I also noticed there was no write endurance specification on their spec sheet for the new Z-drives.  Possibly,  at these capacities it may not matter but, in our view, a write endurance specification should be supplied for any SSD drive, and especially for enterprise class ones.

Z-drive series

OCZ offers two versions of their Z-drive the R and C series, both of which offer the same capacities and high performance but as far as I could tell the R series appears to be have more enterprise class availability and functionality. Specifically, this drive has power fail protection for the writes (capacitance power backup) as well as better SMART support (with “enterprise attributes”). These both seem to be missing from their C Series drives.

We hope the enterprise attribute SMART provides write endurance monitoring and reporting.  But there is no apparent definition of these attributes that were easily findable.

Also the R series power backup, called DataWrite Assurance Technology would be a necessary component for any enterprise disk device.  This essentially saves data written to the device but not to the NAND just yet from disappearing during a power outage/failure.

Given the above, we would certainly opt for the R series drive in any enterprise configuration.

Storage system using Z-drives

Just consider what one can do with a gaggle of Z-drives in a standard storage system.  For example, with 5 Z-drives in a server, it could potentially support 2.5M IOPs/sec and 14GB/sec of data transfer with some resulting loss of performance due to front-end emulation.  Moreover, at 3.2TB per drive, even in a RAID5 4+1 configuration the storage system would support 12.8TB of user capacity. One could conceivably do away with any DRAM cache in such a system and still provide excellent performance.

What the cost for such a system would be is another question. But with MLC NAND it shouldn’t be too obscene.

On the other hand serviceability might be a concern as it would be difficult to swap out a failed drive (bad SSD/PCIe card) while continuing IO operations. This could be done with some special hardware but it’s typically not present in standard, off the shelf servers.


All in all a very interesting announcement from OCZ.  The likelihood that a single server will need this sort of IO performance from a lone drive is not that high (except maybe for massive website front ends) but putting a bunch of these in a storage box is another matter.  Such a configuration would make one screaming storage system with minimal hardware changes and only a modest amount of software development.


When will disks become extinct?

A head assembly on a Seagate disk drive by Robert Scoble (cc) (from flickr)
A head assembly on a Seagate disk drive by Robert Scoble (cc) (from flickr)

Yesterday, it was announced that Hitachi General Storage Technologies (HGST) is being sold to Western Digital for $4.3B and after that there was much discussion in the tweeterverse about the end of enterprise disk as we know it.  Also, last week I was at a dinner at an analyst meeting with Hitachi, where the conversation turned to when disks will no longer be available. This discussion was between Mr. Takashi Oeda of Hitachi RSD, Mr. John Webster of Evaluator group and myself.

Why SSDs will replace disks

John was of the opinion that disks would stop being economically viable in about 5 years time and will no longer be shipping in volume, mainly due to energy costs.  Oeda-san said that Hitachi had predicted that NAND pricing on a $/GB basis would cross over (become less expensive than) 15Krpm disk pricing sometime around 2013.  Later he said that NAND pricing had not come down as fast as projected and that it was going to take longer than anticipated.  Note that Oeda-san mentioned density price cross over for only 15Krpm disk not 7200rpm disk.  In all honesty, he said SATA disk would take longer, but he did not predict when

I think both arguments are flawed:

  • Energy costs for disk drives drop on a Watts/GB basis every time disk density increases. So the energy it takes to run a 600GB drive today will likely be able to run a 1.2TB drive tomorrow.  I don’t think energy costs are going to be the main factor to drives disks out of the enterprise.
  • Density costs for NAND storage are certainly declining but cost/GB is not the only factor in technology adoption. Disk storage has cost more than tape capacity since the ’50s, yet they continue to coexist in the enterprise. I contend that disks will remain viable for at least the next 15-20 years over SSDs, primarily because disks have unique functional advantages which are vital to enterprise storage.

Most analysts would say I am wrong, but I disagree. I believe disks will continue to play an important role in the storage hierarchy of future enterprise data centers.

NAND/SSD flaws from an enterprise storage perspective

All costs aside, NAND based SSDs have serious disadvantages when it comes to:

  • Data retention – the problem with NAND data cells is that they can only be written so many times before they fail.  And as NAND cells become smaller, this rate seems to be going the wrong way, i.e,  today’s NAND technology can support 100K writes before failure but tomorrow’s NAND technology may only support 15K writes before failure.  This is not a beneficial trend if one is going to depend on NAND technology for the storage of tomorrow.
  • Sequential access – although NAND SSDs perform much better than disk when it comes to random reads and less so, random writes, the performance advantage of sequential access is not that dramatic.  NAND sequential access can be sped up by deploying multiple parallel channels but it starts looking like internal forms of wide striping across multiple disk drives.
  • Unbalanced performance – with NAND technology, reads operate quicker than writes. Sometimes 10X faster.  Such unbalanced performance can make dealing with this technology more difficult and less advantageous than disk drives of today with much more balanced performance.

None of these problems will halt SSD use in the enterprise. They can all be dealt with through more complexity in the SSD or in the storage controller managing the SSDs, e.g., wear leveling to try to prolong data retention, multi-data channels for sequential access, etc. But all this additional complexity increases SSD cost, and time to market.

SSD vendors would respond with yes it’s more complex, but such complexity is a one time charge, mostly a one time delay, and once done, incremental costs are minimal. And when you come down to it, today’s disk drives are not that simple either with defect skipping, fault handling, etc.

So why won’t disk drives go away soon.  I think other major concern in NAND/SSD ascendancy is the fact that the bulk NAND market is moving away from SLC (single level cell or bit/cell) NAND to MLC (multi-level cell) NAND due to it’s cost advantage.  When SLC NAND is no longer the main technology being manufactured, it’s price will not drop as fast and it’s availability will become more limited.

Some vendors also counter this trend by incorporating MLC technology into enterprise SSDs. However, all the problems discussed earlier become an order of magnitude more severe with MLC NAND. For example, rather than 100K write operations to failure with SLC NAND today, it’s more like 10K write operations to failure on current MLC NAND.  The fact that you get 2 to 3 times more storage per cell with MLC doesn’t help that much when one gets 10X less writes per cell. And the next generation of MLC is 10X worse, maybe getting on the order of 1000 writes/cell prior to failure.  Similar issues occur for write performance, MLC writes are much slower than SLC writes.

So yes, raw NAND may become cheaper than 15Krpm Disks on a $/GB basis someday but the complexity to deal with such technology is also going up at an alarming rate.

Why disks will persist

Now something similar can be said for disk density, what with the transition to thermally assisted recording heads/media and the rise of bit-patterned media.  All of which are making disk drives more complex with each generation that comes out.  So what allows disks to persist long after $/GB is cheaper for NAND than disk:

  • Current infrastructure supports disk technology well in enterprise storage. Disks have been around so long, that storage controllers and server applications have all been designed around them.  This legacy provides an advantage that will be difficult and time consuming to overcome. All this will delay NAND/SSD adoption in the enterprise for some time, at least until this infrastructural bias towards disk is neutralized.
  • Disk technology is not standing still.  It’s essentially a race to see who will win the next generations storage.  There is enough of an eco-system around disk that will keep pushing media, heads and mechanisms ever forward into higher densities, better throughput, and more economical storage.

However, any infrastructural advantage can be overcome in time.  What will make this go away even quicker is the existance of a significant advantage over current disk technology in one or more dimensions. Cheaper and faster storage can make this a reality.

Moreover, as for the ecosystem discussion, arguably the NAND ecosystem is even larger than disk.  I don’t have the figures but if one includes SSD drive producers as well as NAND semiconductor manufacturers the amount of capital investment in R&D is at least the size of disk technology if not orders of magnitude larger.

Disks will go extinct someday

So will disks become extinct, yes someday undoubtedly, but when is harder to nail down. Earlier in my career there was talk of super-paramagnetic effect that would limit how much data could be stored on a disk. Advances in heads and media moved that limit out of the way. However, there will come a time where it becomes impossible (or more likely too expensive) to increase magnetic recording density.

I was at a meeting a few years back where a magnetic head researcher predicted that such an end point to disk density increase would come in 25 years time for disk and 30 years for tape.  When this occurs disk density increase will stand still and then it’s a certainty that some other technology will take over.  Because as we all know data storage requirements will never stop increasing.

I think the other major unknown is other, non-NAND semiconductor storage technologies still under research.  They have the potential for  unlimited data retention, balanced performance and sequential performance orders of magnitude faster than disk and can become a much more functional equivalent of disk storage.  Such technologies are not commercially available today in sufficient densities and cost to even threaten NAND let alone disk devices.


So when do disks go extinct.  I would say in 15 to 20 years time we may see the last disks in enterprise storage.  That would give disks an almost an 80 year dominance over storage technology.

But in any event I don’t see disks going away anytime soon in enterprise storage.


What eMLC and eSLC do for SSD longevity

Enterprise NAND from Micron.com (c) 2010 Micron Technology, Inc.
Enterprise NAND from Micron.com (c) 2010 Micron Technology, Inc.

I talked last week with some folks from Nimbus Data who were discussing their new storage subsystem.  Apparently it uses eMLC (enterprise Multi-Level Cell) NAND SSDs for its storage and has no SLC (Single Level Cell) NAND at all.

Nimbus believes with eMLC they can keep the price/GB down and still supply the reliability required for data center storage applications.  I had never heard of eMLC before but later that week I was scheduled to meet with Texas Memory Systems and Micron Technologies that helped get me up to speed on this new technology.

eMLC/eSLC defined

eMLC and its cousin, eSLC are high durability NAND parts which supply more erase/program cycles than generally available from MLC and SLC respectively.  If today’s NAND technology can supply 10K erase/program cycles for MLC and similarly, 100K erase/program cycles for SLC then, eMLC can supply 30K.  Never heard a quote for eSLC but 300K erase/program cycles before failure might be a good working assumption.

The problem is that NAND wears out, and can only sustain so many erase/program cycles before it fails.  By having more durable parts, one can either take the same technology parts (from MLC to eMLC) to use them longer or move to cheaper parts (from SLC to eMLC) to use them in new applications.

This is what Nimbus Data has done with eMLC.  Most data center class SSD or cache NAND storage these days are based on SLC. But SLC, with only on bit per cell, is very expensive storage.  MLC has two (or three) bits per cell and can easily halve the cost of SLC NAND storage.

Moreover, the consumer market which currently drives NAND manufacturing depends on MLC technology for cameras, video recorders, USB sticks, etc.  As such, MLC volumes are significantly higher than SLC and hence, the cost of manufacturing MLC parts is considerably cheaper.

But the historic problem with MLC NAND is the reduction in durability.  eMLC addresses that problem by lengthening the page programming (tProg) cycle which creates a better, more lasting data write, but slows write performance.

The fact that NAND technology already has ~5X faster random write performance than rotating media (hard disk drives) makes this slightly slower write rate less of an issue. If eMLC took this to only ~2.5X disk writes it still would be significantly faster.  Also, there are a number of architectural techniques that can be used to speed up drive write speeds easily incorporated into any eMLC SSD.

How long will SLC be around?

The industry view is that SLC will go away eventually and be replaced with some form of MLC technology because the consumer market uses MLC and drives NAND manufacturing.  The volumes for SLC technology will just be too low to entice manufacturers to support it, driving the price up and volumes even lower – creating a vicious cycle which kills off SLC technology.  Not sure how much I believe this, but that’s conventional wisdom.

The problem with this prognosis is that by all accounts the next generation MLC will be even less durable than today’s generation (not sure I understand why but as feature geometry shrinks, they don’t hold charge as well).  So if today’s generation (25nm) MLC supports 10K erase/program cycles, most assume the next generation (~18nm) will only support 3K erase/program cycles. If eMLC then can still support 30K or even 10K erase/program cycles that will be a significant differentiator.


Technology marches on.  Something will replace hard disk drives over the next quarter century or so and that something is bound to be based on transistorized logic of some kind, not the magnetized media used in disks today. Given todays technology trends, it’s unlikely that this will continue to be NAND but something else will most certainly crop up – stay tuned.

Anything I missed in this analysis?

WD’s new SiliconEdge Blue SSD data write spec

Western Digital's Silicon Edge Blue SSD SATA drive (from their website)
Western Digital's SiliconEdge Blue SSD SATA drive (from their website)

Western Digital (WD) announced their first SSD drive for the desktop/laptop market space today.  Their drive offers the typical256, 128, and 64GB capacity points over a SATA interface.  Performance looks ok at 5K random read or write IO/s with sustained transfers at 250 and 140MB/s for read and write respectively.  But what caught my eye was a new specification I hadn’t seen before indicating Maximum GB written per day of 17.5, 35 and 70GB/d for their drives using WD’s Operational Lifespan – LifeEST(tm) definition.

I couldn’t find anywhere that said which NAND technology was used in the device but it likely uses MLC NAND.  In a prior posting we discussed a Toshiba study that said a “typical” laptop user writes about 2.4GB/d and a “heavy” laptop user writes about 9.2GB/d.  This data would indicate that WD’s new 64GB drive can handle almost 2X the defined “heavy” user workload for laptops and their other drives would handle it just fine.  A data write rate for desktop work, as far as I can tell, has not been published, but presumably it would be greater than laptop users.

From my perspective more information on the drives underlying NAND technology, on what a LifeEST specification actually means, and a specification as to how much NAND storage was actually present would be nice, but these are all personal nits.  All that aside, I applaud WD for standing up and saying what data write rate their drives can support.  This needs to be a standard part of any SSD specification sheet and I look forward to seeing more information like this coming from other vendors as well.

Intel-Micron new 25nm/8GB MLC NAND chip


Intel-Micron Flash Technologies just issued another increase in NAND density. This one’s manages to put 8GB on a single chip with MLC(2) technology in a 167mm square package or roughly a half inch per side.

You may recall that Intel-Micron Flash Technologies (IMFT) is a joint venture between Intel and Micron to develop NAND technology chips. IMFT chips can be used by any vendor and typically show up in Intel SSDs as well as other vendor systems. MLC technology is more suitable for use in consumer applications but at these densities it’s starting to make sense for use by data centers as well. We have written before about MLC NAND used in the enterprise disk by STEC and Toshiba’s MLC SSDs. But in essence MLC NAND reliability and endurability will ultimately determine its place in the enterprise.

But at these densities, you can just throw more capacity at the problem to mask MLC endurance concerns. For example, with this latest chip, one could conceivably have a single layer 2.5″ configuration with almost 200GBs of MLC NAND. If you wanted to configure this as 128GB SSD you could use the additional 72GB of NAND for failing pages. Doing this could conceivably add more than 50% to the life of an SSD.

SLC still has better (~10X) endurance but being able to ship 2X the capacity in the same footprint can help.  Of course, MLC and SLC NAND can be combined in a hybrid device to give some approximation of SLC reliability at MLC costs.

IMFT made no mention of SLC NAND chips at the 25nm technology node but presumably this will be forthcoming shortly.  As such, if we assume the technology can support a 4GB SLC NAND in a 167mm**2 chip it should be of significant interest to most enterprise SSD vendors.

A couple of things missing from yesterday’s IMFT press release, namely

  • read/write performance specifications for the NAND chip
  • write endurance specifications for the NAND chip

SSD performance is normally a function of all the technology that surrounds the NAND chip but it all starts with the chip.  Also, MLC used to be capable of 10,000 write/erase cycles and SLC was capable of 100,000 w/e cycles but most recent technology from Toshiba (presumably 34nm technology) shows a MLC NAND write/erase endurance of only 1400 cycles.  Which seems to imply that as the NAND technology increases density write endurance rates degrade. How much is subject to much debate and with the lack of any standardized w/e endurance specifications and reporting, it’s hard to see how bad it gets.

The bottom line, capacity is great but we need to know w/e endurance to really see where this new technology fits.  Ultimately, if endurance degrades significantly such NAND technology will only be suitable for consumer products.  Of course at ~10X (just guessing) the size of the enterprise market maybe that’s ok.

Toshiba studies laptop write rates confirming SSD longevity

Toshiba's New 2.5" SSD from SSD.Toshiba.com
Toshiba's New 2.5in SSD from SSD.Toshiba.com

Today Toshiba announced a new series of SSD drives based on their 32NM MLC NAND technology. The new technology is interesting but what caught my eye was another part of their website, i.e., their SSD FAQs. We have talked about MLC NAND technology before and have discussed its inherent reliability limitations, but this is the first time I have seen some company discuss their reliability estimates so publicly. This was documented more in an IDC white paperon their site but the summary on the FAQ web page speaks to most of it.

Toshiba’s answer to the MLC write endurance question all revolves around how much data a laptop user writes per day which their study makes clear . Essentially, Toshiba assumes MLC NAND write endurance is 1,400 write/erase cycles and for their 64GB drive a user would have to write, on average, 22GB/day for 5 years before they would exceed the manufacturers warranty based on write endurance cycles alone.

Let’s see:

  • 5 years is ~1825 days
  • 22GB/day over 5 years would be over 40,000GB of data written
  • If we divide this by the 1400 MLC W/E cycle limits given above, that gives us something like 28.7 NAND pages could fail and yet still support write reliability.

Not sure what Toshiba’s MLC SSD supports for page size but it’s not unusual for SSDs to ship an additional 20% of capacity to over provision for write endurance and ECC. Given that 20% of 64GB is ~12.8GB, and it has to at least sustain ~28.7 NAND page failures, this puts Toshiba’s MLC NAND page at something like 512MB or ~4Gb which makes sense.

MLC vs, SLC write endurance from SSD.Toshiba.com
MLC vs, SLC write endurance from SSD.Toshiba.com

The not so surprising thing about this analysis is that as drive capacity goes up, write endurance concerns diminish because the amount of data that needs to be written daily goes up linearly with the capacity of the SSD. Toshiba’s latest drive announcements offer 64/128/256GB MLC SSDs for the mobile market.

Toshiba studies mobile users write activity

To come at their SSD reliability estimate from another direction, Toshiba’s laptop usage modeling study of over 237 mobile users showed the “typical” laptop user wrote an average of 2.4GB/day (with auto-save&hibernate on) and a “heavy” labtop user wrote 9.2GB/day under similar specifications. Now averages are well and good but to really put this into perspective one needs to know the workload variability. Nonetheless, their published results do put a rational upper bound on how much data typical laptop users write during a year that can then be used to compute (MLC) SSD drive reliability.

I must applaud Toshiba for publishing some of their mobile user study information to help us all better understand SSD reliability for this environment. It would have been better to see the complete study including all the statistics, when it was done, how users were selected, and it would have been really nice to see this study done by a standard’s body (say SNIA) rather than a manufacturer, but these are all personal nits.

Now, I can’t wait to see a study on write activity for the “heavy” enterprise data center environment, …

STEC’s MLC enterprise SSD

So many choices by Robert S. Donovan
So Many Choices by Robert S. Donovan

I haven’t seen much of a specification on STEC’s new enterprise MLC SSD but it should be interesting.  So far everything I have seen seems to indicate that it’s a pure MLC drive with no SLC  NAND.  This is difficult for me to believe but could easily be cleared up by STEC or their specifications.  Most likely it’s a hybrid SLC-MLC drive similar, at least from the NAND technology perspective, to FusionIO’s SSD drive.

MLC write endurance issue

My difficulty with a pure MLC enterprise drive is the write endurance factor.  MLC NAND can only endure around 10,000 erase/program passes before it starts losing data.  With a hybrid SLC-MLC design one could have the heavy write data go to SLC NAND which has a 100,000 erase/program pass lifecycle and have the less heavy write data go to MLC.  Sort of like a storage subsystem “fast write” which writes to cache first and then destages to disk but in this case the destage may never happen if the data is written often enough.

The only flaw in this argument is that as the SSD drives get bigger (STEC’s drive is available supporting up to 800GB) this becomes less of an issue. Because with more raw storage the fact that a small portion of the data is very actively written gets swamped by the fact that there is plenty of storage to hold this data.  As such, when one NAND cell gets close to its lifetime another, younger cell can be used.  This process is called wear leveling. STEC’s current SLC Zeus drive already has sophisticated wear leveling to deal with this sort of problem with SLC SSDs and doing this for MLCs just means having larger tables to work with.

I guess at some point, with multi-TB per drives, the fact that MLC cannot sustain more than 10,000 erase/write passes becomes moot.  Because there just isn’t that much actively written data out there in an enterprise shop. When you amortize the portion of highly written data as a percentage of a drive, the more drive capacity, the smaller the active data percentages become. As such, as SSD drive capacities gets larger this becomes less of an issue.  I figure with 800GB drives, active data proportion might still be high enough to cause a problem but it might not be an issue at all.

Of course with MLC it’s also cheaper to over provision NAND storage to also help with write endurance. For an 800GB MLC SSD, you could easily add another 160GB (20% over provisioning) fairly cheaply. As such, over provisioning will also allow you to sustain an overall drive write endurance that is much higher than the individual NAND write endurance.

Another solution to the write endurance problem is to increase the power of ECC to handle write failures. This would probably take some additional engineering and may or may not be in the latest STEC MLC drive but it would make sense.

MLC performance

The other issue about MLC NAND is that it has slower read and erase/program cycle times.  Now these are still order’s of magnitude faster than standard disk but slower than SLC NAND.  For enterprise applications SLC SSDs are blistering fast and are often performance limited by the subsystem they are attached to. So, the fact that MLC SSDs are somewhat slower than SLC SSDs may not even be percieved by enterprise shops.

MLC performance is slower because it takes longer to read a cell with multiple bits in it than it takes with just one. MLC, in one technology I am aware of, encodes 2-bits in the voltage that is programmed in or read out from a cell, e.g., VoltageA = “00”, VoltageB=”01″, VoltageC=”10″, and VoltageD=”11″. This gets more complex with 3 or more bits per cell but the logic holds.  With multiple voltages, determining which voltage level is present is more complex for MLC and hence, takes longer to perform.

In the end I would expect STEC’s latest drive to be some sort of SLC-MLC hybrid but I could be wrong. It’s certainly possible that STEC have gone with just an MLC drive and beefed up the capacity, over provisioning, ECC, and wear leveling algorithms to handle its lack of write endurance

MLC takes over the world

But the major issue with using MLC in SSDs is that MLC technology is driving the NAND market. All those items in the photo above are most probably using MLC NAND, if not today then certainly tomorrow. As such, the consumer market will be driving MLC NAND manufacturing volumes way above anything the SLC market requires. Such volumes will ultimately make it unaffordable to manufacture/use any other type of NAND, namely SLC in most applications, including SSDs.

So sooner or later all SSDs will be using only MLC NAND technology. I guess the sooner we all learn to live with that the better for all of us.