Moore’s law is still working with new 2D-electronics, just 1nm thin

ncomms8749-f1This week scientists at Oak Ridge National Laboratory have created two dimensional nano-electronic circuits just 1nm tall (see Nature Communications article). Apparently they were able to create one crystal two crystals ontop of one another, then infused the top that layer with sulfur. With that as a base they used  standard scalable photolitographic and electron beam lithographic processing techniques to pattern electronic junctions in the crystal layer and then used a pulsed laser evaporate to burn off selective sulfur atoms from a target (selective sulferization of the material), converting MoSe2 to MoS2. At the end of this process was a 2D electronic circuit just 3 atoms thick, with heterojunctions, molecularly similar to pristine MOS available today, but at much thinner (~1nm) and smaller scale (~5nm).

In other news this month, IBM also announced that they had produced working prototypes of a ~7nm transistor in a processor chip (see NY Times article). IBM sold off their chip foundry a while ago to Global Foundries, but continue working on semiconductor research with SEMATECH, an Albany NY semiconductor research consortium. Recently Samsung and Intel left SEMATECH, maybe a bit too early.

On the other hand, Intel announced they were having some problems getting to the next node in the semiconductor roadmap after their current 14nm transistor chips (see Fortune article).  Intel stated that the last two generations took  2.5 years instead of 2 years, and that pace is likely to continue for the foreseeable future.  Intel seems to be spending more research and $’s creating low-power or new (GPUs) types of processing than in a mad rush to double transistors every 2 years.

480px-Comparison_semiconductor_process_nodes.svgSo taking it all in, Moore’s law is still being fueled by Billion $ R&D budgets and the ever increasing demand for more transistors per area. It may take a little longer to double the transistors on a chip, but we can see at least another two generations down the ITRS semiconductor roadmap. That is, if the Oak Ridge research proves manufacturable as it seems to be.

So Moore’s law has at least another generation or two to run. Whether there’s a need for more processing power is anyone’s guess but the need for cheaper flash, non-volatile memory and DRAM is a certainty for as far as I can see.

Comments?

Photo Credits: 

  1. From “Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors”, by Masoud Mahjouri-Samani, Ming-Wei Lin, Kai Wang, Andrew R. Lupini, Jaekwang Lee, Leonardo Basile, Abdelaziz Boulesbaa, Christopher M. Rouleau, Alexander A. Puretzky, Ilia N. Ivanov, Kai Xiao, Mina Yoon & David B. Geohegan
  2. From Comparison semiconductor process nodes” by Cmglee – Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons – https://commons.wikimedia.org/wiki/File:Comparison_semiconductor_process_nodes.svg#/media/File:Comparison_semiconductor_process_nodes.svg

More women in tech

Read an interesting article today in the NY Times on how Some Universities Crack Code in Drawing Women to Computer Science. The article discusses how Carnegie Mellon University, Harvey Mudd University and the University of Washington have been successful at attracting women to enter their Computer Science (CompSci) programs.

When I was more active in IEEE there was a an affinity group called Women In Engineering (WIE) that worked towards encouraging female students to go into science, technology, engineering and math (STEM).  I also attended a conference for school age girls interested in science and helped to get the word out about IEEE and its activities.  WIE is still active encouraging girls to go into STEM fields.

However, as I visit startups around the Valley and elsewhere I see lots of coders which are male but very few that are female. On the other hand, the marketing and PR groups have almost a disproportionate representation of females although not nearly as skewed as the male to female ratio in engineering (5:6 in marketing/PR to 7:1 in engineering).

Some in the Valley are starting to report on diversity in their ranks and are saying that only 15 to 17% of their employees in technology are females.

On the other hand, bigger companies seem to do a little better than startups by encouraging more diversity in their technical ranks. But the problem is prevalent throughout the technical industry in the USA, at least.

Universities to the rescue

The article goes on to say that some universities have been more successful in recruiting females to CompSci than others and these have a number of attributes in common:

  • They train female teachers at the high school level in how to teach science better.
  • They host camps and activities where they invite girls to learn more about technology.
  • They provide direct mentors to supply additional help to girls in computer science
  • They directly market to females by changing brochures and other material to show women in science.

Some Universities eliminated programming experience as an entry criteria. They also broadened the appeal of the introductory courses in CompSci to show real world applications of doing technology figuring that this would appeal more to females.  Another university re-framed some of their course work to focus on creative problem solving rather than pure coding.

Other universities are not changing their programs at all and finding with better marketing, more mentorship support and early training they can still attract more females to computer science.

The article did mention one other thing that is attracting more females to CompSci and that is the plentiful, high paying jobs that are currently available in the field.

From my perspective, more females in tech is a good thing and we as an industry should do all we can to encourage this.

~~~~

Comments?

Photo credits: Circuit Bending Orchestra: Lara Grant at Diana Eng’s Fairytale Fashion Show, Eyebeam NYC / 20100224.7D.03621.P1.L1.SQ.BW / SML