Whatever happened to holographic storage?

InPhase Technologies Drive & Media (c) 2010 InPhase Technologies, All Rights Reserved (From their website)
InPhase Technologies Drive & Media (c) 2010 InPhase Technologies, All Rights Reserved (From their website)

Although InPhase Technologies and a few other startups had taken a shot at holographic storage over time, there has not been any recent innovation here that I can see.

Ecosystems matter

The real problem (which InPhase was trying to address) is to build up an ecosystem around their technology.  In magnetic disk storage, you have media companies, head companies, and interface companies; in optical disk (Blu-Ray, DVDs, CDs) you have drive vendors, media vendors, and laser electronic providers; in magnetic tape, you have drive vendors, tape head vendors, and tape media vendors, etc.  All of these corporate ecosystems are driving their respective technologies with joint and separate R&D funding, as fast as they can and gaining economies of scale from specialization.

Any holographic storage or any new storage technology for that matter would have to enter into the data storage market with a competitive product but the real trick is maintaining that competitiveness over time. That’s where an ecosystem and all their specialized R&D funding can help.

Market equavalence is fine, but technology trend parity is key

So let’s say holographic storage enters the market with a 260GB disk platter to compete against something like Blu-ray. Well today Blu-ray technology supports 26GB of data storage in single layer media, costing about $5 each and a drive costs about ~$60-$190.   So to match todays Blu-ray capabilities holographic media would need to cost ~$50 and the holographic drive about ~$600-$1900.  But that’s just today, dual layer Blu-Ray is available coming on line soon and in the labs, a 16-layer Blu-ray recording was demonstrated in 2008.  To keep up with Blu-ray, holographic storage would need to demonstrate in their lab more than 4TB of data on a platter and be able to maintain similar cost multipliers for their media and drives.  Hard to do with limited R&D funding.

As such, I believe it’s not enough to achieve parity to other technologies currently available, any new storage technology really has to be at least (in my estimation) 10x better in costs and performance right at the start in order to gain some sort of foothold that can be sustained.  To do this against Blu-ray, optical holographic would need to start at 260GB platter for $5 with a drive at $60-$190 – just not there yet.

But NAND Flash/SSDs did it!

Yes, but the secret with NAND/SSDs was that they emerged from e-prom’s a small but lucrative market and later their technology was used in consumer products as a lower cost alternative/lower power/more rugged solution to extremely small form factor disk devices that were just starting to come online.  We don’t hear about extremely small factor disk drives anymore because NAND flash won out.  Once NAND flash held the market there, consumer product volumes were able to drive costs down and entice the creation of a valuable multi-company/multi-continent ecosystem.  From there, it was only a matter of time before NAND technologies became dense and cheap enough to be used in SSDs addressing the more interesting and potential more lucrative enterprise data storage domain.

So how can optical holographic storage do it?

Maybe the real problem for holographic storage was its aim at the enterprise data storage market, perhaps if they could have gone after some specialized or consumer market and carved out a niche, they could have created an ecosystem.  Media and Entertainment has some pretty serious data storage requirements which might be a good match.  InPhase was making some inroads there but couldn’t seem to put it altogether.

So what’s left for holographic technology to go after – perhaps medical imaging.  It would play to holographic’s storage strengths (ability to densely record multiple photographs). It’s very niche-like with a few medical instrument players developing MRI, cat scans and other imaging technology that all require lot’s of data storage and long-term retention is a definite plus.  Perhaps, if holographic technology could collaborate with a medical instrument consortium to establish a beachhead and develop some sort of multi-company ecosystem, it could move out from there.  Of course, magnetic disk and tape are also going after this market,  so this isn’t a certainty but there may be others markets like this out there, e.g., check imaging, satellite imagery, etc.  Something specialized like this could be just the place to hunker down, build an ecosystem and in 5-7 years, emerge to attack general data storage again.

Comments?

5 Replies to “Whatever happened to holographic storage?”

  1. Ray, I had the same question after I listened to a presentation at Storage Visions that declared InPhase dead, not surprising considering all the recent press. So I visited InPhase earlier this week to get some answers. Perhaps the best way to describe their situation is o life support but not quite dead. Just posted my observations on my visit on my blog. http://www.storagetopics.com

    I agree with your comment that holographic storage, at least as defined by InPhase is far from an enterprise play. I think their earlier strategies which were obviously influenced by enterprise storage thinking, that tried to leverage the slot FF as defined by StorageTek libraries created a number of issues that contributed to their demise. As you point out, if this technology can reach a maturity to establish a place in the storage hierarchy it is in such massively data intensive environments as digital preservation, video capture and storage, satellites and surveillance drone downloads are great examples. This is the niche the folks at InPhase now see as their sweet spot.

    While a nice thought holographic storage is a long way from being a DVD competitor.

Comments are closed.