Where should IoT data be processed – part 1

I was at FlashMemorySummit 2019 (FMS2019) this week and there was a lot of talk about computational storage (see our GBoS podcast with Scott Shadley, NGD Systems). There was also a lot of discussion about IoT and the need for data processing done at the edge (or in near-edge computing centers/edge clouds).

At the show, I was talking with Tom Leyden of Excelero and he mentioned there was a real need for some insight on how to determine where IoT data should be processed.

For our discussion let’s assume a multi-layered IoT architecture, with 1000s of sensors at the edge, 100s of near-edge processing/multiplexing stations, and 1 to 3 core data center or cloud regions. Data comes in from the sensors, is sent to near-edge processing/multiplexing and then to the core data center/cloud.

Data size

Dans la nuit des images (Grand Palais) by dalbera (cc) (from flickr)
Dans la nuit des images (Grand Palais) by dalbera (cc) (from flickr)

When deciding where to process data one key aspect is the size of the data. Tin GB or TB but given today’s world, can be PB as well. This lone parameter has multiple impacts and can affect many other considerations, such as the cost and time to transfer the data, cost of data storage, amount of time to process the data, etc. All of these sub-factors include the size of the data to be processed.

Data size can be the largest single determinant of where to process the data. If we are talking about GB of data, it could probably be processed anywhere from the sensor edge, to near-edge station, to core. But if we are talking about TB the processing requirements and time go up substantially and are unlikely to be available at the sensor edge, and may not be available at the near-edge station. And PB take this up to a whole other level and may require processing only at the core due to the infrastructure requirements.

Processing criticality

Human or machine safety may depend on quick processing of sensor data, e. g. in a self-driving car or a factory floor, flood guages, etc.. In these cases, some amount of data (sufficient to insure human/machinge safety) needs to be done at the lowest point in the hierarchy, with the processing power to perform this activity.

This could be in the self-driving car or factory automation that controls a mechanism. Similar situations would probably apply for any robots and auto pilots. Anywhere some IoT sensor array was used to control an entity, that could jeopardize the life of human(s) or the safety of machines would need to do safety level processing at the lowest level in the hierarchy.

If processing doesn’t involve safety, then it could potentially be done at the near-edge stations or at the core. .

Processing time and infrastructure requirements

Although we talked about this in data size above, infrastructure requirements must also play a part in where data is processed. Yes sensors are getting more intelligent and the same goes for near-edge stations. But if you’re processing the data multiple times, say for deep learning, it’s probably better to do this where there’s a bunch of GPUs and some way of keeping the data pipeline running efficiently. The same applies to any data analytics that distributes workloads and data across a gaggle of CPU cores, storage devices, network nodes, etc.

There’s also an efficiency component to this. Computational storage is all about how some workloads can better be accomplished at the storage layer. But the concept applies throughout the hierarchy. Given the infrastructure requirements to process the data, there’s probably one place where it makes the most sense to do this. If it takes a 100 CPU cores to process the data in a timely fashion, it’s probably not going to be done at the sensor level.

Data information funnel

We make the assumption that raw data comes in through sensors, and more processed data is sent to higher layers. This would mean at a minimum, some sort of data compression/compaction would need to be done at each layer below the core.

We were at a conference a while back where they talked about updating deep learning neural networks. It’s possible that each near-edge station could perform a mini-deep learning training cycle and share their learning with the core periodicals, which could then send this information back down to the lowest level to be used, (see our Swarm Intelligence @ #HPEDiscover post).

All this means that there’s a minimal level of processing of the data that needs to go on throughout the hierarchy between access point connections.

Pipe availability

binary data flow

The availability of a networking access point may also have some bearing on where data is processed. For example, a self driving car could generate TB of data a day, but access to a high speed, inexpensive data pipe to send that data may be limited to a service bay and/or a garage connection.

So some processing may need to be done between access point connections. This will need to take place at lower levels. That way, there would be no need to send the data while the car is out on the road but rather it could be sent whenever it’s attached to an access point.

Compliance/archive requirements

Any sensor data probably needs to be stored for a long time and as such will need access to a long term archive. Depending on the extent of this data, it may help dictate where processing is done. That is, if all the raw data needs to be held, then maybe the processing of that data can be deferred until it’s already at the core and on it’s way to archive.

However, any safety oriented data processing needs to be done at the lowest level and may need to be reprocessed higher up in the hierachy. This would be done to insure proper safety decisions were made. And needless the say all this data would need to be held.

~~~~

I started this post with 40 or more factors but that was overkill. In the above, I tried to summarize the 6 critical factors which I would use to determine where IoT data should be processed.

My intent is in a part 2 to this post to work through some examples. If there’s anyone example that you feel may be instructive, please let me know.

Also, if there’s other factors that you would use to determine where to process IoT data let me know.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.