The problem with smarter robots

Read an article the other week about how Deepmind (at Google) is approaching the training of robotics using simulation, reinforcement learning, elastic weights, knowledge distillation and progressive learning.

It seems relatively easy to train a robot to handle some task like grabbing or walking. But doing so can take an awfully long time. If you want to try to train a robot to grab something and put it someplace. You can have it start out making some random movements of its arm, wrist and fingers (if they have such things) and then use reinforcement learning to help it improve its movements over time.

But if each grab attempt takes 10 seconds, using reinforcement learning may take 10,000 attempts before it starts to make any significant progress and perhaps another 20,000-50,000 more to get expert at it. Let’s see 60K *10 seconds is 10,000 minutes or ~170 hours. And that’s just one object pick and place. But then maybe you would like to grab different parts and maybe place them in different locations. All these combinations start adding up.

And of course doing 1000s of movements will wear out gears, motors, mechanisms etc. If only this could all be done in electronic simulations. Then assuming the simulations are accurate enough the whole thing could be done in a matter of hours without wearing anything out. Enter robot simulators such as NVIDIA Isaac Sim, OpenAI RoboSchool/PyBullet

But the problems with simulation are …

Simulations are getting more accurate but at some point their accuracy defeats its purpose because the real world is always noisy, windy and not as deterministic as any simulation. One researcher said you could conceivable have a two armed robot be trained to throw all of a cell phones components up into the air and they will all land in their proper places, proper orientations. But in the real world this could never actually happen, or if it did, it could only happen once.

Hurricane Ike - 2008/09/12 - 21:26 UTC by CoreBurn (cc) (from Flickr)
Hurricane Ike – 2008/09/12 – 21:26 UTC by CoreBurn (cc) (from Flickr)

Weather researchers have been dealing with this problem in spades for a long time. There appears to be a fundamental limit to how far in advance we can predict weather and it’s due to the accuracy with which sensors operate and the complexity of feedback loops between the atmosphere, oceans, landforms, etc. So at a fundamental level, simulations can never be completely accurate. But they can be better.

Today’s weather simulations we see on TV/radio use models that average a number of distinct simulations, where sensor information has been slightly and randomly modified. Something similar could be done for robotic simulation environments, to make them more realistic.

But there are other problems with training robots to do lots of tasks.

Forget me not…

AI deep learning and reinforcement learning algorithms are great when charged with learning a single task, but having it learn multiple tasks is much harder to do. Because each task requires its own deep neural network (DNN) and if you train a DNN on one task and then try to train in on a another task, it forgets all the learnings from the original task. Researchers call this catastrophic forgetting.

One way researchers have dealt with this problem is to effectively freeze certain DNN nodes from having their weights changed during subsequent training rounds and leave others flexible or changeable. One can see this when one trains an image recognition DNN to classify different objects by importing a well trained object classifier and freezing all of it’s layers except the top one or two and then training these layers to classify new objects.

This works well but you have effectively changed the DNN to forget the original object classification training and replaced it with a new one. One solution to this approach is to have multiple passes of training, after each one, certain nodes and connections (of importance to that particular task) are selectively frozen. This works well for a limited number of different tasks but over time all nodes become frozen which means that no more learning can take place. Researchers call this approach to the catastrophic forgetting problem elastic weights.

One way to get around the all nodes frozen issue in elastic weights is to have multiple NNs. One which is trained on a specific task and whose weights are frozen and then a DNN that exists alongside this one with it’s own initialized set of weights. But which uses the original DNN as part of the new DNN inputs. This effectively includes and incorporates all the previously learned knowledge into the new, combined DNN. This is called Progressive Neural Networks.

In this fashion one progressive DNN can be sequentially trained on any number of tasks each of which ends up providing input to all subsequent task training activity. Such a progressive network never forgets and can use previously learned knowledge on new tasks.

The problem with progressive DNNs is a proliferation of DNN column. one for each trained task. However there are a couple of approaches to shrinking an ensemble of DNN like progressive training creates into one that is simpler and just as effective. One way is to perturb weights in DNN nodes and see how model prediction accuracy is impacted on all its tasks. If accuracy isn’t impacted that much, then that node and all its connections could be deleted from the model with minimal impact on model accuracy.

Another approach is to use one DNN to train another. Sort of like a teacher-student. This is called Knowledge Distilation. Where one DNN is a large network (the teacher) and a smaller (student) network that is trained to mimic the teacher DNN to achieve similar accuracy. This is done by training the smaller student network to match the predictions/classifications of the larger one.

Google researchers have shown that knowledge distillation works best when the gap in the sizes of the two networks (teacher and student) aren’t that large. They have solved this problem by introducing an intermediate step (called teachers assistent). They train this TA first then use the TA to train the student.

In the above graphic, when using a teacher of size 110 and a student of size 8 the resulting accuracy suffers but if one uses an intermediate DNN, with a size 20 the resultant accuracy of the student is much closer to the teacher..

~~~~

So with realistic simulation we can train a robot to do any specific task, all using only compute resources. And using progressive DNN training, a robot could conceivably be trained to do any number of tasks. And with appropriate knowledge distillation one can reduce the DNN from progressive training into something much smaller (<10%) than the original DNN.

Want a personal robot that can clean up around your place, do the wash, cook your food and do anything else needed. You know what to do.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.