IBM using PCM to implement better AI – round 6

Saw a recent article that discussed IBM’s research into new computing architectures that are inspired by brain computational techniques (see A new brain inspired architecture … ). The article reports on research done by IBM R&D into using Phase Change Memory (PCM) technology to implement various versions of computer architectures for AI (see Tutorial: Brain inspired computation using PCM, in the AIP Journal of Applied Physics).

As you may recall, we have been reporting on IBM Research into different computing architectures to support AI processing for quite awhile now, (see: Parts 1, 2, 3, 4, & 5). In our last post, More power efficient deep learning through IBM and PCM, we reported on a unique hybrid PCM-silicon solution to deep learning computation.

Readers should also be familiar with PCM as well as it’s been discussed at length in a number of our posts (see The end of NAND is near, maybe; The future of data storage is MRAM; and New chip architectures with CPU, storage & sensors …). MRAM, ReRAM and current 3D XPoint seem to be all different forms of PCM (I think).

In the current research, IBM discusses three different approaches to support AI  utilizing PCM devices. All three approaches stem from the physical characteristics of PCM.

(Some) PCM physics

FIG. 2. (a) Phase-change memory is based on the rapid and reversible phase transition of certain types of materials between crystalline and amorphous phases by the application of suitable electrical pulses. (b) Transmission electron micrograph of a mushroom-type PCM device in a RESET state. It can be seen that the bottom electrode is blocked by the amorphous phase.

It turns out that PCM devices have many  characteristics that lend themselves to be useful for specialized computation. PCM devices crystalize and melt in order to change state. The properties associated with melting and crystallization of the PCM media cell can be used to support unique forms of computation. Some of these PCM characteristics include::

  • Analog, not digital memory – PCM devices are, at the core, an analog memory device. We mean that they don’t record just a 0 or 1 (actually resistant or conductive) state, but rather a continuum of values between those two.
  • PCM devices have an accumulation capability –   each PCM cell actually  accumulates a level of activation. This means that one cell can be more or less likely to change state depending on prior activity.
  • PCM devices are noisy – PCM cells arenot perfect recorders of state chang signals  but rather have a well known, random noise which impacts the state level attained, that can be used to introduce randomness into processing.

The other major advantage of PCM devices is that they take a lot less power than a GPU-CPU to work.

Three ways to use PCM for AI learning

FIG. 4. “In-memory computing,” computation is performed in place by exploiting the physical attributes of memory devices organized as a “computational memory” unit. For example, if data A is stored in a computational memory unit and if we would like to perform f(A), then it is not required to bring A to the processing unit. This saves energy and time that would have to be spent in the case of conventional computing system and memory unit. Adapted from Ref. 19.

The Applied Physics article describes three ways to use PCM devices in AI learning. These three include:

  1. Computational storage – which uses the analog capabilities of PCM to perform  arithmetic and learning computations. In a sort of combined compute and storage device.
  2. AI co-processor – which uses PCM devices, in an “all PCM nodes connected to all other PCM nodes” operation that could be used to perform neural network learning. In an AI co-processor there would be multiple all connected PCM modules, each emulating a neural network layer.
  3. Spiking neural networks –  which uses PCM activation accumulation characteristics & inherent randomness to mimic, biological spiking neuron activation.
FIG. 11.
A proposed chip architecture for a co-processor for deep learning based on PCM arrays.28

It’s the last approach that intrigues me.

Spiking neural nets (SNN)

FIG. 12. (a) Schematic illustration of a synaptic connection and the corresponding pre- and post-synaptic neurons. The synaptic connection strengthens or weakens based on the spike activity of these neurons; a process referred to as synaptic plasticity. (b) A well-known plasticity mechanism is spike-time-dependent plasticity (STDP), leading to weight changes that depend on the relative timing between the pre- and post-synaptic neuronal spike activities. Adapted from Ref. 31.

Biological neurons accumulate charge from all input (connected) neurons and when they reach some input threshold, generate an output signal or spike. This spike is then used to start the process with another neuron up stream from it

Biological neurons also exhibit randomness in their threshold-spiking process.

Emulating spiking neurons, n today’s neural nets, takes computation.  Also randomness takes more.

But with PCM SNN, both the spiking process and its randomness, comes from device physics. Using PCM to create SNN seems a logical progression.

PCM as storage, as memory, as compute or all the above

In the storage business, we look at Optane (see our 3D Xpoint post) SSDs as blazingly fast storage. Intel has also announced that they will use 3D Xpoint in a memory form factor which should provide sadly slower, but larger memory devices.

But using PCM for compute, is a radical departure from the von Neumann computer architectures we know and love today. HPE has been discussing another new computing architecture with their memristor technology, but only in prototype form.

It seems IBM, is also prototyping hardware done this path.

Welcome to the next computing revolution.

Photo & Caption Credit(s): Photo and caption from Figure 2 in AIP Journal of Applied Physics article

Photo and caption from Figure 4 in AIP Journal of Applied Physics article

Photo and caption from Figure 11 in AIP Journal of Applied Physics article

Photo and caption from Figure 12 in AIP Journal of Applied Physics article



Data banks, data deposits & data withdrawals in the data economy – part 1

perspective by anomalous4 (cc) (from Flickr)
Big data visualization, Facebook friend connections
Facebook friend carrousel by antjeverena (cc) (from flickr)

Read an interesting article this week in The Atlantic, Why Technology Favors Tyranny by Yuvai Noah Harari, about the inevitable future of technology and how the use of data will drive it.

At the end of the article Harari talks about the need to take back ownership of our data in order to gain some control over the tech giants that currently control our data.

In part 3, Harari discusses the coming AI revolution and the impact on humanity. Yes there will still be jobs, but early on less jobs for unskilled labor and over time less jobs for skilled labor.

Yet, our data continues to be valuable. AI neural net (NN) accuracy increases as a function of the amount of data used to train it. As a result,  he has the most data creates the best AI NN. This means our data has value and can be used over and over again to train other AI NNs. This all sounds like data is just another form of capital, at least for AI NN training.

If only we could own our data, then there would still be value from people’s (digital) exertions (labor), regardless of how much AI has taken over the reigns of production or reduced the need for human work.Safe by cjc4454 (cc) (from flickr)

Safe by cjc4454 (cc) (from flickr)What we need is data (savings) banks. These banks would hold people’s data, gathered from social media likes/dislikes,  cell phone metadata, app/web history, search history, credit history, purchase history,  photo/video streams, email streams, lab work, X-rays, wearables info, etc. Probably many more categories need to be identified but ultimately ALL the digital data we generate today would need to be owned by people and deposited in their digital bank accounts.

Data deposits?

Social media companies, telecom, search companies, financial services app companies, internet  providers, etc. anywhere you do business should supply a copy of the digital data they gather for a person back to that persons data bank account.

There are many technical problems to overcome here but it could be as simple as an object storage bucket, assigned to each person that each digital business deposits (XML versions of) our  digital data they create for everyone that uses their service. They would do this as compensation for using our data in their business activities.

How to change data ownership?

Today, we all sign user agreements which essentially gives a company the rights to our data in perpetuity. That needs to change. I see a few ways that this change could come about

  1. Countries could enact laws to insure personal data ownership resides in the person generating it and enforce periodic distribution of this data
  2. Market dynamics could impel data distribution, e.g. if some search firm supplied data to us, we would be more likely to use them.
  3. Societal changes, as AI becomes more important to profit making activities and reduces the need for human work, and as data continues to be an important factor in AI success, data ownership becomes essential to retaining the value of human labor in society.

Probably, all of the above and maybe more would be required to change the ownership structure of data.

How to profit from data?

Technical entities needing data to train AI NNs could solicit data contributions through an Initial Data Offering (IDO). IDO’s would specify types of data required and a proportion of AI NN ownership, they would cede to all  data providers. Data providers would be apportioned ownership based on the % identified and the number of IDO data subscribers.

perspective by anomalous4 (cc) (from Flickr)
perspective by anomalous4 (cc) (from Flickr)

Data banks would extract the data requested by the IDO and supply it to the IDO entity for use. For IDOs, just like ICO’s or IPO’s, some would fail and others would succeed. But the data used in them would represent an ownership share sort of like a  stock (data) certificate in the AI NN.

Data bank responsibilities

Data banks would have various responsibilities and would need to collect fees to perform them. For example, data banks would be responsible for:

  1. Protecting data deposits – to insure data deposits are never lost, are never accessed without permission, are always trackable as to how they are used..
  2. Performing data deposits – to verify that data is deposited from proper digital entities, to validate that data deposits are in a usable form and to properly store the data in a customers object storage bucket.
  3. Performing data withdrawals – upon customer request, to extract all the appropriate data requested by an IDO,  anonymize it, secure it, package it and send it to the IDO originator.
  4. Reconciling data accounts – to track data transactions, data banks would supply a monthly statement that identifies all data deposits and data withdrawals, data revenues and data expenses/fees.
  5. Enforcing data withdrawal types – to enforce data withdrawal types, as data  withdrawals can have many different characteristics, such as exclusivity, expiration, geographic bounds, etc. Data banks would need to enforce withdrawal characteristics, at least to the extent they can
  6. Auditing data transactions – to insure that data is used properly, a consortium of data banks or possibly data accountancies would need to audit AI training data sets to verify that only data that has been properly withdrawn is used in trying the NN. .

AI NN, tools and framework responsibilities

In order for personal data ownership to work well, AI NNs, tools and frameworks used today would need to change to account for data ownership.

  1. Generate, maintain and supply immutable data ownership digests – data ownership digests would be a sort of stock registry for the data used in training the AI NN. They would need to be a part of any AI NN and be viewable by proper data authorities
  2. Track data use – any and all data used in AI NN training should be traceable so that proper data ownership can be guaranteed.
  3. Identify AI NN revenues – NN revenues would need to be isolated, identified and accounted for so that data owners could be rewarded.
  4. Identify AI NN data expenses – NN data costs would need to somehow be isolated, identified and accounted for so that data expenses could be properly deducted from data owner awards. .

At some point there’s a need for almost a data profit and loss statement as well as a data balance sheet for at an AI NN level. The information supplied above should make auditing data ownership, use and rewards much more feasible. But it all starts with identifying data ownership and the data used in training the AI.


There are a thousand more questions that come to mind. For example

  • Who owns earth sensing satellite, IoT sensors, weather sensors, car sensors etc. data? Everyone in the world (or country) being monitored is laboring to create the environment sensed by these devices. Shouldn’t this sensor data be apportioned to the people of the world or country where these sensors operate.
  • Who pays data bank fees? The generators/extractors of the data could pay in addition to providing data deposits for the privilege to use our data. I could also see the people paying.  Having the company pay would give them an incentive to make the data load be as efficient and complete as possible. Having the people pay would induce them to use their data more productively.
  • What’s a decent data expiration period? Given application time frames these days, 7-15 years would make sense. But what happens to the AI NN when data expires. Some way would need to be created to extract data from a NN, or the AI NN would need to cease being used and a new one would  need to be created with new data.
  • Can data deposits be rented/sold to data aggregators? Sort of like a AI VC partnership only using data deposits rather than money to fund AI startups.
  • What happens to data deposits when a person dies? Can one inherit a data deposits, would a data deposit inheritance be taxable as part of an estate transfer?

In the end, as data is required to train better AI, ownership of our data makes us all be capitalist (datalists) in the creation of new AI NNs and the subsequent advancement of society. And that’s a good thing.




AI processing at the edge

Read a couple of articles over the past few weeks (TechCrunch: Google is making a fast, specialized TPU chip for edge devices … and IEEE Spectrum: Two startups use processing in flash for AI at the edge) about chips for AI at the IoT edge.

The two startups, Syntiant and Mythic, are moving to analog only or analog-digital solutions to provide AI processing needed at the edge while Google is taking their TPU technology to the edge.  We have written about Google’s TPU before (see: TPU and hardware vs. software  innovation (round 3) post).

The major challenge in AI processing at the edge is power consumption. Both  startups attack the power problem by using flash and other analog circuitry to provide power efficient compute.

Google attacked the power problem with their original TPU by reducing computational precision from 64- to 8-bits. By reducing transistor counts, they lowered power requirements proportionally.

AI today is based on neural networks (NN), that connect simulated neurons via simulated synapses with weights attached to indicate whether to boost or decrease the signal being transmitted. AI learning is done by setting those weights and creating the connections between simulated neurons and the synapses.  So learning is setting weights and establishing connections. Actual inferences (using AI to do something) is a process of exciting input simulated neurons/synapses and letting the signal flow through the NN with each weight being used to determine output(s).

AI with standard compute

The problem with doing AI learning or inferencing with normal CPUs or even CUDAs is that the NN does thousands if not millions of  multiplication-accumulation actions at each simulated synapse-neuron connection. Doing all these multiplication-accumulation takes power. CPUs and CUDAs can do these sorts of operations on 32 or 64 bit numbers or even floating point but it still takes power.

AI processing power

AI processing power is measured in trillions of (accumulate-multiply) operations per second per watt (TOPS/W). Mythic believes it can perform 4 TOPS/W and Syntiant says it can do 20 TOPS/W. In comparison, the NVIDIA Volta V100 can do about 0.4 TOPS/W (according to the article). Although  comparing Syntiant-Mythic TOPS to NVIDIA TOPS is a little like comparing apples to oranges.

A current Intel Xeon Platinum 8180M (2.5Ghz, 28 Core processors, 205 W) can probably do (assuming one multiplication-accumulation per hertz) about 2.5 Billion X 28 Cores = 70 Billion Ops Second/205 W or 0.3 GOPS/W (source: Platinum 8180M Data sheet).

As for Google’s TPU TOPS/W, TPU2 is rated at 45 GFLOPS/chip and best guess for power consumption is between 160W and 200W, let’s say 180W. With power at that level, TPU2 should hit 0.25 GFLOPS/W.  TPU3 is coming out with 8X the power but it uses water cooling (read LOTS MORE POWER).

Nonetheless, it appears that Mythic and Syntiant are one to two orders of magnitude better than the best that NVIDIA and TPU2 can do today and many orders of magnitude better than Intel X86.

Improving TOPS/W

Use NAND, as an analog memory to read, write and hold  NN weights is an easy way to reduce power consumption. Combine that with  analog circuitry that can do multiplication and addition with those flash values and you have a AI NN processor. This way you reduce the need to hold weights in memory and do compute in registers by collapsing both compute and memory into the same componentry.

The major difference between Syntiant and Mythic seems to be the amount of analog circuitry they use. Mythic seems to relegate the analog circuitry to an accelerator while Syntiant has a more extensive use of analog circuitry throughout their chip. Probably why it can perform 5X the TOPS/W of Mythic’s IPU.

IBM and others have been working on neuromorphic chips some of which are analog based and others which are all digital based. We’ve written extensively on IBM and some on MIT’s approaches (for the latest on IBM see: More power efficient deep learning through IBM and PCM, and for MIT see: MIT builds an analog synapse chip) and follow the links there to learn more.


Special purpose AI hardware is emerging from the labs and finally reaching reality. IBM R&D has been playing with it for a long time. Google is working on TPU3 so there’s no stopping them. And startups are seeing an opening and are taking everyone on. Stay tuned, were in for a good long ride before the someone rises above the crowd and becomes the next chip giant.



Photo Credit(s): TechCrunch  Google is making a fast, specialized TPU chip for edge devices … article

Introduction to Digital Design Verification at Mythic, Article

Images from Google Cloud Platform Blog on the TPU

Two startups use processing in flash for AI at the edge, IEEE Spectrum article courtesy of Mythic

MIT’s new Navion chip for better Nano drone navigation

Read an article this week in Science Daily (Chip upgrade help’s bee-sized drones navigate) about a recent chip created by MIT, called Navion, that reduces size and power consumption for electronics used in drone navigation. The chip is also documented on MIT’s Navion project homepage and in a technical  paper describing the new VIO (Visual-Inertial Odometry ) Navion chip.

The Navion chip can perform inertial measurement at 52Khz as well as process video streams of 752×480 stereo images at 171 frames per second in a 20 sqmm package consuming only 24mW of power. The chip was fabricated on a 65nm CMOS process line.

Navion is the result of a collaborative design process which optimized electronics required to perform  drone navigation processing. By placing all the memory required for inertial measurement and image analysis and all the processing hardware on the same chip, they have substantially reduced power consumption and space requirements for drone navigation.

Navion architecture

Navion uses a state of the art, non-linear factor graph optimization algorithm to navigate in space.  It doesn’t sound like  DL neural net image recognition but more like a statistical/probabilistic approach to image mapping and place estimation. The chip uses image compression, two stage memory, and sparse linear solver memory to reduce image processing memory requirements from 3.5MB to less than 1MB.

The chip uses 3 inputs: two images (right &  left image) and IMU (inertial management unit sensor) and has one (complex output), its estimate of the current state of where it is on the map.

Navion processing creates and maintains a 3D map using stereo images and provides navigational support to move through that space.  According to the paper, the Navion chip updates the state(s) and sparse 3D map at a KF (Kalman filter) rate of between 16 and 90 fps. Navion also offers configurations options to maximize accuracy, throughput or energy efficiency.

Navion compares well to other navigation electronics

The table shows comparisons of the Navion chip against other traditional navigational systems that use Xeon, ARM or FPGA chips. As far as I can tell it’s either much better or at least on a par with these other larger, more complex, power hungry systems.

Nano drones are coming to our space, sooner than anyone expects.


Photo credit(s): System overview from Navion project page (c) 2018 MIT;

Picture of chip with layout  from Navion project page (c) 2018 MIT;

Navion: A Fully Integrated Energy-Efficient Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones (c) 2018 MIT

More power efficient deep learning through IBM and PCM

Read an article today from MIT Technical Review (TR) (AI could get 100 times more efficient with IBM’s new artificial synapses). Discussing the power efficiency of a new analog approach to neural nets and deep learning.

We have talked about IBM’s TrueNorth and Synapse neuromorphic devices  and PCM neural nets before (see: Parts 1, 2, 3, & 4).

The paper in Nature (Equivalent accuracy accelerated neural training using analogue memory ) referred to by the TR article is behind a pay wall. However, another ArsTechnica (Ars) article (Training a neural network in phase change memory beats GPUs) on the new research was a bit more informative.

Both articles discuss a new analog approach, using phase change memory (PCM) which has significant power/training efficiency when compared to today’s standard GPU AI processor. Both the TR and Ars papers report on IBM developments simulating a new (PCM based) neuromorphic device that reduces training  power consumption AND training time by a factor of 100.   But the Nature paper abstract says it reduces both power consumption and computational space (computations per sq mm) by a factor of 100, not exactly the same.


PCM is a nonvolatile memory technology (see part 4 above for more info) that uses electronically induced phase changes in a material to establish a 1’s or 0’s state for a PCM bit.

However, another advantage of PCM is that it also can take on a state between 0 and 1. This is bad for data memory/storage but good for neural nets.

For a PCM based neural net you could have a layer of PCM (neuron) structures and standard wiring that wires all the PCM neurons to the next layer down, for however many layers required for your neural net. The PCM value would indicate the strength of the connection between neurons (synapses).

But, the problem with a PCM neural net is that PCM states don’t provide enough graduations of values between 0 and 1 to fully map today’s neural net weights.

IBM’s latest design has two different tiers of neural nets

According to Ars article, IBM’s latest design has a two tier approach to using PCM in its neural net. The first, top tier uses a PCM structure and the second lower tier uses a more traditional, silicon based structure and together they implement the neural net.

The Ars article speaks of the new two tier design as providing two digit resolution for the weight between  neuron. The structure implemented in PCM determines the higher order digit and the more traditional, silicon based, neural net segment determines the lower order digit in the two digit neural net weight.

With this approach, training occurs mostly in the more traditional, silicon layer neural net, but every 100 or so training events (epochs),  information is used to modify the PCM structure as well. In this fashion, the PCM-silicon neural net is fine tuned using 1 out of 100 or so training events to correct the PCM layer and the other 99 or so training events to modify the silicon layer.

In addition, the silicon layer is apparently implemented in silicon to mimic the PCM layer, using capacitors and transistors.


I wonder why not just use two tiers of PCM to do the same thing but it’s possible that training the silicon layer is more power efficient, speedy or both than the PCM layer.

The TR and Ars articles seem to make a point of saying this is analogue computing. And I would guess because the PCM and the silicon layer can take on many values between 0 and 1 that means it’s not digital.

Much of the article is based on combined hardware (built using 90nm technology) and software simulations of the new PCM-silicon neuromorphic device. However, simulations like this are a standard step in ASIC design process, and if successful, we would expect an chip to emerge from foundry within 6-12 months from now.

The Nature paper’s abstract indicated that they simulated the device using standard (MNIST, MNIST-backrand, CIFAR-10 and CIFAR-100) training datasets for handwritten digit recognition and color image classification/recognition. The new device was able to approach within 1% accuracy of software trained neural net with 1% the power and (when updated to latest foundry technologies) in 1% the space.

Furthermore, the abstract said that the current device supports ~205K synapses. The previous generation, IBM TrueNorth (see part 2 above) had the “equivalent of 1M neurons” and their earlier IBM SYNAPSE (see part 1 above) chip had “256K programable synapses” and 256 computational elements. But I believe both of those were single tier devices.

I’d also be very interested in whether the neuromorphic device is compatible with and could be programmed with PyTorch or TensorFlow but I didn’t see any information on how the devices were programmed.


Photo Credit(s): neuron by mararie 

3D CrossPoint graphic, taken from Intel-Micron session at FMS16

brain-neurons by Fotis Bobolas

A new way to compute

I read an article the other day on using using random pulses rather than digital numbers to compute with, see Computing with random pulses promises to simplify circuitry and save power, in IEEE Spectrum. Essentially they encode a number as a probability in a random string of bits and then use simple logic to compute with. This approach was invented in the early days of digital logic and was called stochastic computing.

Stochastic numbers?

It’s pretty easy to understand how such logic can work for fractions. For example to represent 1/4, you would construct a bit stream that had one out of every four bits, on average, as a 1 and the rest 0’s. This could easily be a random string of bits which have an average of 1 out of every 4 bits as a one.

A nice result of such a numerical representation is that it easily results in more precision as you increase the length of the bit stream. The paper calls this progressive precision.

Progressive precision helps stochastic computing be more fault tolerant than standard digital logic. That is, if the string has one bit changed it’s not going to make that much of a difference from the original string and computing with an erroneous number like this will probably result in similar results to the correct number.  To have anything like this in digital computation requires parity bits, ECC, CRC and other error correction mechanisms and the logic required to implement these is extensive.

Stochastic computing

2 bit multiplier

Another advantage of stochastic computation and using a probability  rather than binary (or decimal) digital representation, is that most arithmetic functions are much simpler to implement.


They discuss two examples in the original paper:

  • AND gate

    Multiplication – Multiplying two probabilistic bit streams together is as simple as ANDing the two strings.

  • 2 input stream multiplexer

    Addition – Adding two probabilistic bit strings together just requires a multiplexer, but you end up with a bit string that is the sum of the two divided by two.

What about other numbers?

I see a couple of problems with stochastic computing:,

  • How do you represent  an irrational number, such as the square root of 2;
  • How do you represent integers or for that matter any value greater than 1.0 in a probabilistic bit stream; and
  • How do you represent negative values in a bit stream.

I suppose irrational numbers could be represented by taking a near-by, close approximation of the irrational number. For instance, using 1.4 for the square root of two, or 1.41, or 1.414, …. And this way you could get whatever (progressive) precision that was needed.

As for integers greater than 1.0, perhaps they could use a floating point representation, with two defined bit strings, one representing the mantissa (fractional part) and the other an exponent. We would assume that the exponent rather than being a probability from 0..1.0, would be inverted and represent 1.0…∞.

Negative numbers are a different problem. One way to supply negative numbers is to use something akin to complemetary representation. For example, rather than the probabilistic bit stream representing 0.0 to 1.0 have it represent -0.5 to 0.5. Then progressive precision would work for negative numbers as well a positive numbers.

One major downside to stochastic numbers and computation is that high precision arithmetic is very difficult to achieve.  To perform 32 bit precision arithmetic would require a bit streams that were  2³² bits long. 64 bit precision would require streams that were  2**64th bits long.

Good uses for stochastic computing

One advantage of simplified logic used in stochastic computing is it needs a lot less power to compute. One example in the paper they use for stochastic computers is as a retinal sensor for in the body visual augmentation. They developed a neural net that did edge detection that used a stochastic front end to simplify the logic and cut down on power requirements.

Other areas where stochastic computing might help is for IoT applications. There’s been a lot of interest in IoT sensors being embedded in streets, parking lots, buildings, bridges, trucks, cars etc. Most have a need to perform a modest amount of edge computing and then send information up to the cloud or some edge consolidator intermediate

Many of these embedded devices lack access to power, so they will need to make do with whatever they can find.  One approach is to siphon power from ambient radio (see this  Electricity harvesting… article), temperature differences (see this MIT … power from daily temperature swings article), footsteps (see Pavegen) or other mechanisms.

The other use for stochastic computing is to mimic the brain. It appears that the brain encodes information in pulses of electric potential. Computation in the brain happens across exhibitory and inhibitory circuits that all seem to interact together.  Stochastic computing might be an effective way, low power way to simulate the brain at a much finer granularity than what’s available today using standard digital computation.


Not sure it’s all there yet, but there’s definitely some advantages to stochastic computing. I could see it being especially useful for in body sensors and many IoT devices.


Photo Credit(s):  The logic of random pulses

2 bit by 2 bit multiplier, By Sodaboy1138 (talk) (Uploads) – Own work, CC BY-SA 3.0, wikimedia

AND ANSI Labelled, By Inductiveload – Own work, Public Domain, wikimedia

2 Input multiplexor

A battery free implantable neural sensor, MIT Technology Review article

Integrating neural signal and embedded system for controlling a small motor, an IntechOpen article

AI reaches a crossroads

There’s been a lot of talk on the extendability of current AI this past week and it appears that while we may have a good deal of runway left on the machine learning/deep learning/pattern recognition, there’s something ahead that we don’t understand.

Let’s start with MIT IQ (Intelligence Quest),  which is essentially a moon shot project to understand and replicate human intelligence. The Quest is attempting to answer “How does human intelligence work, in engineering terms? And how can we use that deep grasp of human intelligence to build wiser and more useful machines, to the benefit of society?“.

Where’s HAL?

The problem with AI’s deep learning today is that it’s fine for pattern recognition, but it doesn’t appear to develop any basic understanding of the world beyond recognition.

Some AI scientists concede that there’s more to human/mamalian intelligence than just pattern recognition expertise, while others’ disagree. MIT IQ is trying to determine, what’s beyond pattern recognition.

There’s a great article in Wired about the limits of deep learning,  Greedy, Brittle, Opaque and Shallow: the Downsides to Deep Learning. The article says deep learning is greedy because it needs lots of data (training sets) to work, it’s brittle because step one inch beyond what’s it’s been trained  to do and it falls down, and it’s opaque because there’s no way to understand how it came to label something the way it did. Deep learning is great for pattern recognition of known patterns but outside of that, there must be more to intelligence.

The limited steps using unsupervised learning don’t show a lot of hope, yet

“Pattern recognition” all the way down…

There’s a case to be made that all mammalian intelligence is based on hierarchies of pattern recognition capabilities.

That is, at a bottom level  human intelligence consists of pattern recognition, such as vision, hearing, touch, balance, taste, etc. systems which are just sophisticated pattern recognition algorithms that label what we are hearing as Bethovan’s Ninth Symphony, tasting as grandma’s pasta sauce, and seeing as the Grand Canyon.

Then, at the next level there’s another pattern recognition(-like) system that takes all these labels and somehow recognizes this scene as danger, romance, school,  etc.

Then, at the next level, human intelligence just looks up what to do in this scene.  Almost as if we have a defined list of action templates that are what we do when we are in danger (fight or flight), in romance (kiss, cuddle or ?), in school (answer, study, view, hide, …), etc.  Almost like a simple lookup table with procedural logic behind each entry

One question for this view is how are these action templates defined and  how many are there. If, as it seems, there’s almost an infinite number of them, how are they selected (some finer level of granularity in scene labeling – romance but only flirting …).

No, it’s not …

But to other scientists, there appears to be more than just pattern recognition(-like) algorithms and lookup and act algorithms, going on inside our brains.

For example, once I interpret a scene surrounding me as in danger, romance, school, etc.,  I believe I start to generate possible action lists which I could take in this domain, and then somehow I select the one to do which makes the most sense in this situation or rather gets me closer to my current goal (whatever that is) in this situation.

This is beyond just procedural logic and involves some sort of memory system, action generative system, goal generative/recollection system, weighing of possible action scripts, etc.

And what to make of the brain’s seemingly infinite capability to explain itself…

Baby intelligence

Most babies understand their parents language(s) and learn to crawl within months after birth. But they haven’t listened to thousands of hours of people talking or crawled thousands of miles.  And yet, deep learning requires even more learning sets in order to label language properly or  learning how to crawl on four appendages. And of course, understanding language and speaking it are two different capabilities. Ditto for crawling and walking.

How does a baby learn to recognize these patterns without TB of data and millions of reinforcements (“Smile for Mommy”, say “Daddy”). And what to make of the, seemingly impossible to contain wanderlust, of any baby given free reign of an area.

These questions are just scratching the surface in what it really means to engineer human intelligence.


MIT IQ is one attempt to try to answer the question that: assuming we understand how to pattern recognition can be made to work well on today’s computers what else do we need to do to build a more general purpose intelligence.

There are obvious ethical questions on whether we want to engineer a human level of intelligence (see my Existential risks… post). Our main concern is what it does (to humanity) once we achieve it.

But assuming we can somehow contain it for the benefit of humanity, we ought to take another look at just what it entails.


Photo Credits:  Tech trends for 2017: more AI …., the Next Silicon Valley website. 

HAL from 2001 a Space Odyssey 

Design software test labeling… 

Exploration in toddlers…, Science Daily website

Atomristors, a new single (atomic) layer memristor

Read an article the other day about the “Atomristor: non-volatile resistance  switching in atomic sheets of transition metal dichalcogenides” (TMDs), an ACS publication. The article shows research that discovered an atomic sheet level version of a memristor. The device is an atomic sheet of TMD that is sandwiched between two (gold, silver or graphene) electrodes.

They refer to the device switching non-volatile resistance (NVR) from low to high or vice versa but from our perspective it could just as easily be considered a non-volatile device usable for memory, storage, or electronic circuitry.

Prior to this research, it was believed that such resistance switching could not be accomplished with single atomic, sub-nanometre (0.7nm) sized, sheet of material.

NVR atomristor technological properties

The researchers discovered that NVR switching can occur at different device temperatures, sheet areas, compliance current, voltage sweep rate, and layer thickness. In all five degrees of freedom were tested to show that  TMD atomristors had wide applicability and allowed for significant environmental and electronic variability.

Not only was the effect extremely versatile, the researchers identified multiple materials which could be used for the atomic sheet. In fact, TMD are a class of materials and they showed 4 different TMD materials that had the NVR effect.

Surprisingly, some TMD materials exhibited the NVR effect using unipolar voltages and some using bipolar voltages, and some could use both.

The researchers went a long way to showing that the NVR was due to the atomic sheet. In one instance they specifically used non-lithographic measures to fabricate the devices. This process utilized graphene manufacturing like methods to produce an atomic sheet ontop of gold foil and depositing another gold layer ontop of that.

But they also used standard fabrication techniques to build the atomristor devices as well. Using these different fabrication methods, they were able to show the NVR effect using different electrodes types, testing gold, silver, and graphene, all of which worked similarly.

The paper talked of using atomristors in a software defined radio, as a electronic circuit/cross bar switch, or as a memory/storage device. But they also indicated that it could easily be used in a neuromorphic computer as well, effectively simulating neuron like computations.

There’s much more information in the ACS article.

How does it compare to flash?

As compared to flash, atomristors NVR devices should be able to provide higher levels (bits per mm) of density. And due to the lower current (~1v) required for (bipolar) NVR setting, reading and resetting, there’s a lower probability of leakage of stored charges as they’re scaled down to nm sizes.

And of course it comes in 2d sheets, so it’s just as amenable to 3D arrays as NAND and 3DX is today. That means that as fabs start scaling 3D NAND up in layers, atomristor NVR devices should be able to follow their technology roadmap to be scaled up just as high.

Atomristor computers, storage or switch devices

Going from the “lab” to an IT shop is a multifaceted endeavour that takes a lot of time. There are many steps to needed to get to commercialization and many lab breakthroughs never make it that far because of complexity, economics, and other factors.

For instance, memristors were first proposed in 1971 and HP(E) researchers first discovered material that could produce the memristor effect in 2008. In March 2012, HRL fabricated the first memristor chip on CMOS. In Dec. 2017, >9 years later, at their Discover Conference, HPE showed off “The Machine”, a prototype of a memristor based computer to the public. But we are still waiting to see one on the market for sale.

That being said, memristor technologies didn’t exist before 2008, so the use of these devices in a computer took sometime to be understood. The fact that atomristors are “just” an extremely, thinner version of memristors should help it be get to market faster that original memristor technologies. But how much faster than 9-12 years is anyone’s guess.



Picture Credit(s): All graphics and pictures are from the article in ACS