University of Manchester fires up world’s largest neuromorphic computer

Read an article the other day about SpiNNaker, the University of Manchester’s neuromorphic supercomputer (see Live Science Article: Worlds largest supercomputer brain…). There’s also a wikipedia page on SpiNNaker and a SpiNNaker project page.


SpiNNaker is part of the European Union Human Brain Project (HBP), Brain Simulation Program.

SpiNNaker supercomputing hardware

(Most of the following information is from the SpiNNaker project home page and SpiNNaker architectural overview page.)

The system has 1 million ARM9 (968) cores and ~7TB of memory, with each core emulating 1000 spiking neurons. With this amount of computing power, it should be able to emulate a 1B (1 billion, 10^9) neuron brain (region).

The system will consist of 1200 PCBs with each PCB containing a 48 chip array and associated networking hardware & memory. Each node contains a SpiNNaker chip with its 18 ARM9 cores.

Each node has two chips stitch bonded together on top of one another. The bottom consists of the 18-ARM9 cores and the top the double DDR memory and networking layer.

Total bisectional networking bandwidth is 5 B packets/second with each packet consisting of 5 or 9 bytes of data.

SpiNNaker operates on 1W per chip or 90KW of power to run the entire machine. Given that each chip is 18 cores and each core is 1000 neurons, this means each neuron simulation takes about 55.5µW of power to run.

You can deploy a single board as IoT solution but @ ~48W per board it may be be too energy consumptive for IoT.

SpiNNaker supercomputing software

According to the home page and the Live Science article, SpiNNaker is intended to be used to model critical segments of the human brain such as the  basal ganglia brain area for the EU HBP brain simulation program.

The system architecture has three tiers, a host machine (layer) which communicates with the monitor layer to start and monitor application execution and uses “ybug” to communicate,  a monitor core (layer) which interacts with ybug at the host and uses “scamp” to communicate with the application processors, and the application processors (layer) consisting of the ARM cores, memory and packet networking hardware which runs the  SpiNNaker Application Runtime Kernel (sark).

Applications which run on sark can consist of spiking neural networks or multi-layer perceptrons (MLP), classical deep learning neural networks.

  • MLP applications use back propagation and a training and inference phases, familiar to any deep learning application and uses a fixed neural network topology.
  • Spiking neural network applications use ongoing learning so there’s no training or inference phases (it’s always learning), use a variable network topology (reconfiguring the ARM core-packet network) and currently supports the PyNN spiking neural network simulator.

Unfortunately most of the links in the SpiNNaker project pages referring to PyNN spiking networking applications are broken. But PyNN is a Python based spiking neural network simulator that can run on a number of different hardware platforms (including sark/SpiNNaker).

Most of the AI groups I’ve talked with mention PyTorch or TensorFlow as AI frameworks of choice these days. But it’s unclear to me whether these two support spiking neural network generation/simulation.

If you want to learn more about programming SpiNNaker please check out their Software for SpiNNaker wiki page.


As you may recall, a homo sapiens brain has an estimated 16B to 86B neurons in its average cerebral cortex (see wikipedia “animals listed by neuron count” article, for low estimate, EU’s HBP Brain Simulation page, for high estimate), which puts SpiNNaker today, at about the equivalent of less than a average tufted capuchin cerebral cortex (@1.2B neurons).

Given the above and with SpiNNaker @1B neurons, we are only  4 to 7 generations away from human equivalence. That means we have at most ~14 years left before a 128B spiking neuronal simulation machine is available.

But SpiNNaker today is based on ARM9 cores and ARM11 cores already exist. So, if they redesigned/reimplemented the chip today, it would already be 2X the core count. aake that human equivalence is only a max of 12 years away.

The mean estimate for AGI (artificial general intelligence) seems to be 2040-2050 (see wikipedia Technological Singularity article). But given what University of Manchester’s SpiNNaker is capable of doing today, I don’t think we have that long to wait.

Photo Credits: All photos/charts above are from the SpiNNaker Project pages at the University of Manchester website

Low power spiking AI-Arm edge processing from voltage scaling on ETA TENSAI chip

Read an article in IEEE Spectrum (ETA Compute debuts spiking NN chip for edge AI) about a company producing a new AI IOT chip based on ARM microprocessors with DSPs for dedicated matrix computations.

The new ETA Compute TENSAI chip  technology supports spiking neural networks (NN) as well as more normal, convolutional NN  depending on  edge AI requirements. More  information can be found in an Embedded Computing article (Micropower intelligence for edge devices) and a EE News article (ETA adds spiking NN support to MCU)

We have discussed spiking NN  in prior posts  latest post: IBM using PCM for better AI -round 6). Any spiking NN more closely mimics real biological neurons present in the brains of humans and other life.

ETA also claims that spiking NN perform better unsupervised learning. They included some examples of this in videos. In one video, ETA trains a spiking NN to do the same job as a convolutional NN with 1/10th the pixel data.

In addition, spiking NN only use neural weight values of 0 or 1, whereas normal convolutional NN operations require 8 to 16 bit numbers. So spiking NN arithmetic really only uses addition while convolutional NN need 8-16 bit multiplicative arithmetic to determine resultant weights.

Voltage scaling saves power

The other claim is that the TENSAI chip can perform computations on the order of 10 microwatts of power per megahertz (~10 μW/MHz) using the ARM/DSP combination with voltage scaling

The new TENSAI chip is their 3rd generation with multiple ARM M3 cores and NXP digital signal processors. These cores are implemented in a sub-threshold, asynchronous mode process that allows them to operate at much lower voltage, ~0.2V and at varying clock frequencies. This is called voltage scaling electronics. Doing this took analog design, which ETA considers part of their special IP.

ETA claims the TENSAI chip can operate in listen mode (“Ok Google?”) and only consume 50 microwatts of power and once a key word is discovered, operate in full computational mode with 500 microwatts of power.

I couldn’t find a data sheet for the TENSAI chip, so was unable to see how many TOPS/W it could perform as discussed in prior posts (see: AI processing at the edge post). But it looks to be even more power efficient.

The TENSAI chip was announced at ARM Tech Con(terence) and won the Design Innovation of the Year award at the conference.


Photo Credits: Photo and caption from Figure 12 in  A brain inspired architecture…,  AIP Journal of Applied Physics article

Photo from EE News ETA adds spiking NN support to MCU article

Chart from Embedded Computing  Micropower intelligence for edge devices article

Board photo from IEEE Spectrum ETA Compute debuts spiking NN chip for edge AI article

IBM using PCM to implement better AI – round 6

Saw a recent article that discussed IBM’s research into new computing architectures that are inspired by brain computational techniques (see A new brain inspired architecture … ). The article reports on research done by IBM R&D into using Phase Change Memory (PCM) technology to implement various versions of computer architectures for AI (see Tutorial: Brain inspired computation using PCM, in the AIP Journal of Applied Physics).

As you may recall, we have been reporting on IBM Research into different computing architectures to support AI processing for quite awhile now, (see: Parts 1, 2, 3, 4, & 5). In our last post, More power efficient deep learning through IBM and PCM, we reported on a unique hybrid PCM-silicon solution to deep learning computation.

Readers should also be familiar with PCM as well as it’s been discussed at length in a number of our posts (see The end of NAND is near, maybe; The future of data storage is MRAM; and New chip architectures with CPU, storage & sensors …). MRAM, ReRAM and current 3D XPoint seem to be all different forms of PCM (I think).

In the current research, IBM discusses three different approaches to support AI  utilizing PCM devices. All three approaches stem from the physical characteristics of PCM.

(Some) PCM physics

FIG. 2. (a) Phase-change memory is based on the rapid and reversible phase transition of certain types of materials between crystalline and amorphous phases by the application of suitable electrical pulses. (b) Transmission electron micrograph of a mushroom-type PCM device in a RESET state. It can be seen that the bottom electrode is blocked by the amorphous phase.

It turns out that PCM devices have many  characteristics that lend themselves to be useful for specialized computation. PCM devices crystalize and melt in order to change state. The properties associated with melting and crystallization of the PCM media cell can be used to support unique forms of computation. Some of these PCM characteristics include::

  • Analog, not digital memory – PCM devices are, at the core, an analog memory device. We mean that they don’t record just a 0 or 1 (actually resistant or conductive) state, but rather a continuum of values between those two.
  • PCM devices have an accumulation capability –   each PCM cell actually  accumulates a level of activation. This means that one cell can be more or less likely to change state depending on prior activity.
  • PCM devices are noisy – PCM cells arenot perfect recorders of state chang signals  but rather have a well known, random noise which impacts the state level attained, that can be used to introduce randomness into processing.

The other major advantage of PCM devices is that they take a lot less power than a GPU-CPU to work.

Three ways to use PCM for AI learning

FIG. 4. “In-memory computing,” computation is performed in place by exploiting the physical attributes of memory devices organized as a “computational memory” unit. For example, if data A is stored in a computational memory unit and if we would like to perform f(A), then it is not required to bring A to the processing unit. This saves energy and time that would have to be spent in the case of conventional computing system and memory unit. Adapted from Ref. 19.

The Applied Physics article describes three ways to use PCM devices in AI learning. These three include:

  1. Computational storage – which uses the analog capabilities of PCM to perform  arithmetic and learning computations. In a sort of combined compute and storage device.
  2. AI co-processor – which uses PCM devices, in an “all PCM nodes connected to all other PCM nodes” operation that could be used to perform neural network learning. In an AI co-processor there would be multiple all connected PCM modules, each emulating a neural network layer.
  3. Spiking neural networks –  which uses PCM activation accumulation characteristics & inherent randomness to mimic, biological spiking neuron activation.
FIG. 11.
A proposed chip architecture for a co-processor for deep learning based on PCM arrays.28

It’s the last approach that intrigues me.

Spiking neural nets (SNN)

FIG. 12. (a) Schematic illustration of a synaptic connection and the corresponding pre- and post-synaptic neurons. The synaptic connection strengthens or weakens based on the spike activity of these neurons; a process referred to as synaptic plasticity. (b) A well-known plasticity mechanism is spike-time-dependent plasticity (STDP), leading to weight changes that depend on the relative timing between the pre- and post-synaptic neuronal spike activities. Adapted from Ref. 31.

Biological neurons accumulate charge from all input (connected) neurons and when they reach some input threshold, generate an output signal or spike. This spike is then used to start the process with another neuron up stream from it

Biological neurons also exhibit randomness in their threshold-spiking process.

Emulating spiking neurons, n today’s neural nets, takes computation.  Also randomness takes more.

But with PCM SNN, both the spiking process and its randomness, comes from device physics. Using PCM to create SNN seems a logical progression.

PCM as storage, as memory, as compute or all the above

In the storage business, we look at Optane (see our 3D Xpoint post) SSDs as blazingly fast storage. Intel has also announced that they will use 3D Xpoint in a memory form factor which should provide sadly slower, but larger memory devices.

But using PCM for compute, is a radical departure from the von Neumann computer architectures we know and love today. HPE has been discussing another new computing architecture with their memristor technology, but only in prototype form.

It seems IBM, is also prototyping hardware done this path.

Welcome to the next computing revolution.

Photo & Caption Credit(s): Photo and caption from Figure 2 in AIP Journal of Applied Physics article

Photo and caption from Figure 4 in AIP Journal of Applied Physics article

Photo and caption from Figure 11 in AIP Journal of Applied Physics article

Photo and caption from Figure 12 in AIP Journal of Applied Physics article