123: GreyBeards talk data analytics with Sean Owen, Apache Spark committee/PMC member & Databricks, lead data scientist

The GreyBeards move up the stack this month with a talk on big data and data analytics with Sean Owen (@sean_r_owen), Data Science lead at Databricks and Apache Spark committee and PMC member. The focus of the talk was on Apache Spark.

Spark is an Apache Software Foundation open-source data analytics project and has been up and running since 2010. Sean is a long time data scientist and was extremely knowledgeable about data analytics, data science and the role that Spark has played in the analytics ecosystem. Listen to the podcast to learn more.

Spark is not an infrastructure solution as much as an application framework. It’s seems to be a data analytics solution specifically designed to address Hadoops shortcomings. At the moment, it has replaced Hadoop and become the go to solution for data analytics across the world. Essentially, Spark takes data analytic tasks/queries and runs them, very quickly against massive data sets.

Spark takes analytical tasks or queries and splits them up into stages that are run across a cluster of servers. Spark can use many different cluster managers (see below) to schedule stages across worker nodes attempting to parallelize as many as possible.

Spark has replaced Hadoop mainly because it’s faster and has a better, easier to use API. Spark was written in Scala which runs on JVM, but its API supports SQL, Java, R (R on Spark) and Python (PySpark). The latter two have become the defacto standard languages for data science and AI, respectively.

Storage for Spark data can reside on HDFS, Apache HBase, Apache Solr, Apache Kudu and (cloud) object storage. HDFS was the original storage protocol for Hadoop. HBase is the Apache Hadoop database. Apache Solr was designed to support high speed, distributed, indexed search. Apache Kudu is a high speed distributed database solution. Spark, where necessary, can also use local disk storage for interim result storage.

Spark supports three data models: RDD (resilient distributed dataset); DataFrames (column headers and rows of data, like distributed CSVs); and DataSets (distributed typed and untyped data). Spark DataFrame data can be quite large, it seems nothing to have a 100M row dataframe. Spark Datasets are a typed version of dataframes which are only usable in Java API as Python and R have no data typing capabilities.

One thing that helped speed up Spark processing over Hadoop, is its native support for in-memory data. With Hadoop, intermediate data had to be stored on disk. With in-memory data, Spark supports the option to keep it in memory, speeding up subsequent processing of this data. Spark data can be pinned or cached in memory using the API calls. And the availability of bigger servers with Intel Optane or just lots more DRAM, have made this option even more viable.

Another thing that Spark is known for is its support of multiple cluster managers. Spark currently supports Apache Mesos, Kubernetes, Apache Hadoop YARN, and Spark’s own, standalone cluster manager. In any of these, Spark has a main driver program that takes in analytics requests, breaks them into stages and schedules worker nodes to execute them..

Most data analytics work is executed in batch mode, offline, with incoming data stored on disk/flash someplace (see storage options above). But Spark can also run in real-time, streaming mode processing data streams. Indeed, Spark can be combined with Apache Kafka to process Kafka topic streams.

I asked about high availability (HA) characteristics, specifically for data. Sean mentioned that data HA is more of a storage consideration. But Spark does support HA for analytics jobs/tasks as a whole. As stages are essentially state-less tasks, analytics HA can be done by monitoring stage execution to completion and if needed, re-scheduling failed stages to run on other worker nodes.

Regarding Spark usability, it has a CLI and APIs but no GUI. Spark has a number of parameters (I counted over 20 for the driver program alone), that can be used to optimize its execution. So it’s maybe not the easiest solution to configure and optimize by hand, but that’s where other software systems, such as Databricks (see link above) comes in. Databricks supplies a managed Spark solution for customers that don’t want/need to deal with all the configuration complexity of Spark.

Sean Owen, Lead Data Scientist, Databricks and Apache Spark PMC member

Sean is a principal solutions architect focusing on machine learning and data science at Databricks. He is an Apache Spark committee and PMC member, and co-author of Advanced Analytics with Spark.

Previously, Sean was director of Data Science at Cloudera and an engineer at Google.

120: GreyBeards talk CEPH storage with Phil Straw, Co-Founder & CEO, SoftIron

GreyBeards talk universal CEPH storage solutions with Phil Straw (@SoftIronCEO), CEO of SoftIron. Phil’s been around IT and electronics technology for a long time and has gone from scuba diving electronics, to DARPA/DOD researcher, to networking, and is now doing storage. He’s also their former CTO and co-founder of the company. SoftIron make hardware storage appliances for CEPH, an open source, software defined storage system.

CEPH storage includes file (CEPHFS, POSIX), object (S3) and block (RBD, RADOS block device, Kernel/librbd) services and has been out since 2006. CEPH storage also offers redundancy, mirroring, encryption, thin provisioning, snapshots, and a host of other storage options. CEPH is available as an open source solution, downloadable at CEPH.io, but it’s also offered as a licensed option from RedHat, SUSE and others. For SoftIron, it’s bundled into their HyperDrive storage appliances. Listen to the podcast to learn more.

SoftIron uses the open source version of CEPH and incorporates this into their own, HyperDrive storage appliances, purpose built to support CEPH storage.

There are two challenges to using open source solutions:

  • Support is generally non-existent. Yes, the open source community behind the (CEPH) project supplies bug fixes and can possibly answer some questions but this is not considered enterprise support where customers require 7x24x365 support for a product
  • Useability is typically abysmal. Yes, open source systems can do anything that anyone could possibly want (if not, code it yourself), but trying to figure out how to use any of that often requires a PHD or two.

SoftIron has taken both of these on to offer a CEPH commercial product offering.

Take support, SoftIron offers enterprise level support that customers can contract for on their own, even if they don’t use SoftIron hardware. Phil said the would often get kudos for their expert support of CEPH and have often been requested to offer this as a standalone CEPH service. Needless to say their support of SoftIron appliances is also excellent.

As for ease of operations, SoftIron makes the HyperDrive Storage Manager appliance, which offers a standalone GUI, that takes the PHD out of managing CEPH. Anything one can do with the CEPH CLI can be done with SoftIron’s Storage Manager. It’s also a very popular offering with SoftIron customers. Similar to SoftIron’s CEPH support above, customers are requesting that their Storage Manager be offered as a standalone solution for CEPH users as well.

HyperDrive hardware appliances are storage media boxes that offer extremely low-power storage for CEPH. Their appliances range from high density (120TB/1U) to high performance NVMe SSDs (26TB/1U) to just about everything in between. On their website, I count 8 different storage appliance offerings with various spinning disk, hybrid (disk-SSD), SATA and NVMe SSDs (SSD only) systems.

SoftIron designs, develops and manufacturers all their own appliance hardware. Manufacturing is entirely in the US and design and development takes place in the US and Europe only. This provides a secure provenance for HyperDrive appliances that other storage companies can only dream about. Defense, intelligence and other security conscious organizations/industries are increasingly concerned about where electronic systems come from and want assurances that there are no security compromises inside them. SoftIron puts this concern to rest.

Yes they use CPUs, DRAMs and other standardized chips as well as storage media manufactured by others, but SoftIron has have gone out of their way to source all of these other parts and media from secure, trusted suppliers.

All other major storage companies use storage servers, shelves and media that come from anywhere, usually sourced from manufacturers anywhere in the world.

Moreover, such off the shelf hardware usually comes with added hardware that increases cost and complexity, such as graphics memory/interfaces, Cables, over configured power supplies, etc., but aren’t required for storage. Phil mentioned that each HyperDrive appliance has been reduced to just what’s required to support their CEPH storage appliance.

Each appliance has 6Tbps network that connects all the components, which means no cabling in the box. Also, each storage appliance has CPUs matched to its performance requirements, for low performance appliances – ARM cores, for high performance appliances – AMD EPYC CPUs. All HyperDrive appliances support wire speed IO, i.e, if a box is configured to support 1GbE or 100GbE, it transfers data at that speed, across all ports connected to it.

Because of their minimalist hardware design approach, HyperDrive appliances run much cooler and use less power than other storage appliances. They only consume 100W or 200W for high performance storage per appliance, where most other storage systems come in at around 1500W or more.

In fact, SoftIron HyperDrive boxes run so cold, that they don’t need fans for CPUs, they just redirect air flom from storage media over CPUs. And running colder, improves reliability of disk and SSD drives. Phil said they are seeing field results that are 2X better reliability than the drives normally see in the field.

They also offer a HyperDrive Storage Router that provides a NFS/SMB/iSCSI gateway to CEPH. With their Storage Router, customers using VMware, HyperV and other systems that depend on NFS/SMB/iSCSI for storage can just plug and play with SoftIron CEPH storage. With the Storage Router, the only storage interface HyperDrive appliances can’t support is FC.

Although we didn’t discuss this on the podcast, in addition to HyperDrive CEPH storage appliances, SoftIron also provides HyperCast, transcoding hardware designed for real time transcoding of one or more video streams and HyperSwitch networking hardware, which supplies a secure provenance, SONiC (Software for Open Networking in [the Azure] Cloud) SDN switch for 1GbE up to 100GbE networks.

Standing up PB of (CEPH) storage should always be this easy.

Phil Straw, Co-founder & CEO SoftIron

The technical visionary co-founder behind SoftIron, Phil Straw initially served as the company’s CTO before stepping into the role as CEO.

Previously Phil served as CEO of Heliox Technologies, co-founder and CTO of dotFX, VP of Engineering at Securify and worked in both technical and product roles at both Cisco and 3Com.

Phil holds a degree in Computer Science from UMIST.

117: GreyBeards talk HPC file systems with Frank Herold, CEO of ThinkParQ, makers of BeeGFS

We return back to our storage thread with a discussion of HPC file systems with Frank Herold, (@BeeGFS) CEO of ThinkParQ GmbH, the makers of BeeGFS. I’ve seen BeeGFS start to show up in some IO500 top storage benchmark results and as more and more data keeps coming online every day, we thought it time to start finding out how our friends in the HPC world handle their data deluge.

Frank’s a former rocket scientist, that’s been in and around the storage industry for years, and was very knowledgeable about BeeGFS’s software defined, parallel file system. He seemed to have a great grasp of the IO requirements in HPC, Life Sciences and other HPC-like applications. Listen to the podcast to learn more.

Turns out that ThinkParQ is a spinoff of the research institute in Germany that originally developed BeeGFS parallel file system. There are apparently two version of their product one which is publicly available (downloadable from their website) and another with commercial support. It’s not quite 100% open source but it’s got a lot of open source in it and their GIT repository is available

BeeGFS was primarily focused on HPC workloads but as this type of work has become more mainstream, they have moved beyond HPC and now have significant installations in Life Sciences, Oil&Gas and many other big data environments.

It runs on x86/AMD, OpenPower, and ARM CPUs. BeeGFS comes as a number of services, one of which is a storage service which uses a backend with ZFS or XFS file system. It also uses (POSIX compliant) host client software to access their system. There’s also a metadata and monitoring service. Most of the time these services run on separate servers but BeeGFS also supports a “converged mode”, where all these services run on a single server. And you can have multiple converged mode servers in a cluster.

BeeGFS is a parallel file system. This means that it intrinsically supports multiple metadata services/servers and multiple storage servers which allow it to scale up storage bandwidth and performance considerably beyond single appliance systems. Data is automatically distributed across all the storage servers in the configuration, unless you specify that data reside on specific, say all flash storage servers. Similarly, metadata is automatically distributed across all metadata servers in the system.

They don’t support any specific RAID protection other than mirroring and that really to speed up read throughput. Rather they depend on the underlying XFS/ZFS file system to provide drive failure protection (RAID5/6).

One of BeeGFS’s selling points is that it has few tuning parameters that a customer needs to fiddle with. Frank said it runs quite well right out of the box.

BeeGFS offers a single name space that spans the cluster (of metadata servers/storage servers). But customers can elect to split this name space across a subset of these metadata and storage servers, and by doing so they create multiple BeeGFS clusters.

There’s no inherent support for NFS or SMB but customers can configure NFS or SAMBA servers that use BeeGFS as backend storage. Also, there’s no data reduction built into BeeGFS and no automatic data tiering across the backend storage (file systems).

But as noted above, customers can direct which backend storage to use to hold their data. And they do offer a CLI data movement primitive and customers can use this in conjunction with other software to implement storage tiering or do it themselves.

Metadata performance is extremely important for small files and for large multi Billion object file systems. BeeGFS uses extensive metadata caching to provide faster access to this information.

Speaking of small file performance, we had a decent discussion on the tradeoffs involved between small and large file performance. And although BeeGFS has decent small file performance it’s not a be all for every small file intensive application. According to Frank, not every small file workload is optimal for BeeGFS.

They offer BeeOND which is BeeGFS on demand. This is an integration with Slurm workload scheduler (HPC work scheduler) that allows customers to spin up a scratch BeeGFS parallel file system across compute servers with storage.

Slurm’s BeeOND integration brings all BeeGFS services up and deploys them on compute nodes you specify. At this point you have a fully installed BeeGFS (scratch) parallel file system. Customers may use this scratch file system to support any compute-data intensive workload theyneed to run. When no longer needed, Slurm can be directed to automatically dismantle the BeeGFSl file system.

We talked about BeeGFS partners. They have a number of regional partners that provide installation and onsite support and a number of technical partners, such as NetApp, Dell, HPE and INSPUR, that supply BeeGFS configured servers and systems for deployment/installation.

Frank Herold, CEO ThinkparQ

Frank Herold is the CEO of ThinkParQ GmbH – the company behind BeeGFS. He actively leads the company and the product strategy of BeeGFS as a global player for parallel high-performance file systems.

Prior to joining ThinkParQ, he held various senior management positions within ADIC and Quantum Corporation, responsible for market segments within the academic and scientific research, oil and gas, broadcast and video surveillance sectors, focusing on large scale, high-performance and enterprise accounts within EMEA. 

Frank has over 25 years of experience in the IT industry and holds a master’s degree in engineering (Dipl. -Ing.) in rocket science.

108: GreyBeards talk DNA storage with David Turek, CTO, Catalog DNA

The Greybeards get off the beaten (enterprise) path this month, to see what lies ahead with a discussion on DNA storage. David Turek, CTO, Catalog DNA (@CatalogDNA) is a long time IBMer that had been focused on HPC systems at IBM but left and went to Catalog DNA to pursue the commercialization of DNA storage, an “emerging” technology. CatalogDNA is a company out of Boston that had recently closed a round of funding and are focused on bringing DNA storage out into the world of IT.

David was a pleasure to talk and has lot’s of knowledge on HPC and enterprise data center solutions. He also has a good grasp of what it will take to bring DNA storage to market. Keith has had some prior experience with DNA technologies in BioPharma so could talk in more detail about the technology and its ecosystem. [We’re trying out a new format, let us know what you think; The Eds.]

Ray has written about DNA storage in his RayOnStorage Blog, most recently in April of this year and May of last year. It’s been an ongoing blog topic of his for almost a decade now. When Ray was interviewed about the technology he thought it interesting but had serious obstacles with read and write latencies and throughput as well as the size of the storage device.

Well CatalogDNA seems to have got a good handle on write throughput and are seriously working on the rest.

However, DNA storage’- volumetric density was always of exceptional. Early on in the podcast, David mentioned that DNA storage was 6 orders of magnitude (1 million times) more dense in bytes/mm**3 than magnetic tape today. An LTO8 tape device stores 12TB (uncompressed) in a tape cartridge, 14.2 in**3 (230.3 cm**3) or roughly 845GB/in**3 (52GB/cm**3). One million times this, would be 12EB in the same volume.

The challenge with LTO8, disk or SSD storage today is at some point you have to move the data from one device to a more modern device. This could be every 3-5 years (for disk or SSD) or 25-30 years for tape. In either case, at some point IT would need to incur the cost and time to move the data. Not much of a problem for 100TB or so but when you start talking PB or EB of data, it can be a never ending task.

DNA storage

David mentioned Catalog uses “synthetic DNA” in their storage. This means the DNA it uses is designed to be incompatible with natural DNA such that it wouldn’t work in a cell. It has stops or other biological mechanisms to inhibit it’s use in nature. Yes it uses the same sugars, backbones, and other chemistry of biologically active DNA, but it has been specifically modified to inhibit its use by normal cellular machinery. 

DNA storage has a number of unique capabilities :

  • It can be made to last forever, by being dried out (dessicated) and encased in a crystal and takes 0 power/energy to be stored for eons.
  • It can be cheaply and easily replicated, almost an infinite number of times, for only the cost of chemical feedstock, chemical interactions and energy. Yes, this may take time but the process scales up nicely. One could make 2 copies in first cycle, 4 in the 2nd, 8 in the 3rd, etc and by doing this it would only take 20 cycles to create a million copies. If each cycle takes 10 minutes, in 3:20, you could have a million copies of 1EB of data.
  • It can be easily searched for target information. This involves fabricating a DNA search molecule and inserting it into the storage solution. Once there it would match up with the DNA segment that held your key. And of course, the search molecule and the data could be replicated to speed up any search process.
  • We already mentioned the extreme density advantage above.

Speed of DNA storage access

David said they can already write Catalog DNA storage in MB/sec.

The process they use to write is like a conveyer belt which starts off with a polyethylene sheet (web actually). Somewhere, the digital data comes in, is chunked and transformed into DNA strand (25-50 base pairs) molecules or dots. The polyethylene sheet rolls into a machine that uses multiple 3D print heads to deposit dots (the DNA strand data chunks) at web points. This machine/process deposits 100K or more of these dots onto the web. The sheet then moves to the next stage where the DNA molecules are scraped off and drained into a solution. Then a wet process occurs which uses chemistry to make the DNA more readable and enables the separate DNA molecules to connect into a data strand. Then this data strand goes into another process where it gets reduced in volume and so that it is more stable.

If needed, one can add another step that dries out or desiccates the data strand into even a smaller volume which can then be embedded into a crystalline structure which could last for centuries.

David compared the DNA molecules (data chunks) to Legos, only they are the same pieces in a million different colors Each piece represents some segment of data bits/bytes. Using chemistry and proprietary IP each separate DNA molecule self organizes (connects) into a data strand, representing the information you want to store.

Reading DNA involves, off the shelf, DNA sequencers. The one Catalog currently uses is the Oxford NanoPore device, but there are others. David didn’t say how fast they could read DNA data. But current DNA reading devices destroy the data. So making replicas of the data would be required to read it.

David said their current write device is L shaped with one leg about 14’ (4.3m) long and the other about 12’ (3.7m) long with each leg being about 3’ (0.9m) wide.

Searching EB of data in minutes?!

DNA strands can be searched (matched) using a search molecule and inserting this into the storage solution (that holds the data strands). Such a molecule will find a place in the data that has a matching (DNA) data element and I believe attach itself to the data strand.

For example, lets say you had recorded all of a country’s emails for a month or so and you wanted to search them for the words, “bomb”, “terrorist”, “kill”, etc. One could create a set of search molecules, replicate them any number of times (depending on how quickly you wanted to search the data and how many matches you expected), and insert them into a data pool with multiple data strands that stored the email traffic.

After some time, you’d come back and your search would be done. You’d need to then extract the search hits, and read out the portion of the data strands (emails) that matched. I’m guessing extraction would involve some sort of (wet) chemical process or filtration.

State of Catalog DNA storage

David mentioned that as a publicity stunt they wrote the whole Wikipedia onto Catalog DNA storage. The whole Wikipedia fit into a cylinder about the height of a big knuckle on your hand and in a width smaller than a finger. The size of the whole Wikipedia, with complete edit history is 10TB uncompressed and if they stored all the edit versions plus its media such as images, videos, audio and other graphics, that would add another 23TB (as of end of 2014), so ~33TB uncompressed.

David believes in 18 months they could have a WORM (write once, read many times) data storage solution that could be deployed in customer data centers which would supply immense data repositories in relatively small solution containers.

CatalogDNA is currently in a number of PoCs with major corporations (not labs or universities) to show how DNA storage technology can be used to solve problems.

David believes that at some point they will be able to make compute engines entirely of DNA. At that point, one could have a combined compute and storage (HCI-like) DNA server using the same technology in a solution. And as mentioned previously, one could replicate from one DNA server & storage to a million DNA servers & storage in just 20 cycles. How’s that for scale out.


David Turek, CTO Catalog DNA

Dave Turek is Catalog’s Chief Technology Officer. He comes to Catalog from IBM where he held numerous executive positions in High Performance Computing and emerging technologies.

He was the development executive for the IBM SP program which produced the first commercially successful massively parallel system; he started IBM’s Linux Cluster business; launched an early offering in Cloud computing called Deep Computing Capacity on Demand; produced the Roadrunner system, the world’s first petascale computer; and was responsible for IBM’s exascale strategy which led to the deployment of the Summit and Sierra systems at Oak Ridge and Lawrence Livermore National Laboratories respectively.

David has been invited to testify to Congress on numerous occasions regarding the future of computing in the US and has helped establish technical collaborations with universities, businesses, and government agencies around the world.

This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png
This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png


107: GreyBeards talk MinIO’s support of VMware’s new Data Persistence Platform with AB Periasamy, CEO MinIO

Sponsored by:

The GreyBeards have talked with Anand Babu (AB) Periasamy (@ABPeriasamy), CEO MinIO, before (see 097: GreyBeards talk open source S3… episode). And we also saw him earlier this year, at their headquarters for Storage Field Day 19 (SFD19) where AB gave a great discussion of what they were doing and how it worked (see MinIO’s SFD18 presentation videos).

The podcast runs ~26 minutes. AB is very technically astute and always a delight to talk with. He’s extremely knowledgeable about the cloud, containerized applications and high performing S3 compatible object storage. And now with MinIO and vSAN Data Persistence under VCF Tanzu, very knowledgeable about the virtualized IT environment as well. Listen to the podcast to learn more. [We’re trying out a new format placing the podcast up front. Let us know what you think; The Eds.]


VMware VCF vSAN Data Persistence Platform with MinIO

Earlier this month VMware announced a new capability available with the next updates of vSAN, vSphere & VCF called the vSAN Data Persistence Platform. The Data Persistence Platform is a VMware framework designed to integrate stateful, independent vendor software defined storage services in vSphere. By doing so, VCF can provide API access to persistent storage services for containerized applications running under Tanzu Kubernetes (k8s) Grid service clusters.

At the announcement, VMware identified three object storage and one (Cassandra) database technical partners that had been integrated with the solution.  MinIO was an object storage, open source partner.

VMware’s VCF vSAN Data Persistence framework allows vCenter administrators to use vSphere cluster infrastructure to configure and deploy these new stateful storage services, like MinIO, into namespaces and enables app developers direct k8s API access to these storage namespaces to provide persistent, stateful object storage for applications. 

With VCF Tanzu and the vSAN Data Persistence Platform using MinIO, dev can have full support for their CiCd pipeline using native k8s tools to deploy and scale containerized apps on prem, in the public cloud and in hybrid cloud, all using VCF vSphere.

MinIO on the Data Persistence Platform

AB said MinIO with Data Persistence takes advantage of a new capability called vSAN Direct which gives vSAN almost JBOF types of IO control and performance. With MinIO vSAN Direct, storage and k8s cluster applications can co-reside on the same ESX node hardware so that IO activity doesn’t have to hop off host to be performed. In addition, can now populate ESX server nodes with lots (100s to 1000s?) of storage devices and be assured the storage will be used by applications running on that host.

As a result, MinIO’s object storage IO performance on VCF Tanzu is very good due to its use of vSAN Direct and MinIO’s inherent superior IO performance for S3 compatible object storage.

With MinIO on the VCF vSAN Data Persistence Platform, VMware takes over all the work of deploying MinIO software services on the VCF cluster. This way customers can take advantage of MiniO’s fully compatible S3 object storage system operating in their VCF cluster. For app developers they get the best of all worlds, infrastructure configured, deployed and managed by admins but completely controllable, scaleable and accessible through k8s API services.

If developers want to take advantage of MinIO specialized services such as data security or replication, they can do so directly using MinIOs APIs, just like they would when operating bare metal or in the cloud.

AB said the VMware development team was very responsive during development of Data Persistence. AB was surprised to see such a big company, like VMware, operate with almost startup like responsiveness. Keith mentioned he’s seen this in action as vSAN has matured very rapidly to a point of almost feature parity, with just about any storage system out there today .

With MinIO object storage, container applications that need PB of data, now have a home on VCF Tanzu. And it’s as easily usable as any public cloud storage. And with VCF Tanzu configuring and deploying the storage over its own infrastructure, and then having it all managed and administered by vCenter admins, its simple to create and use PB of object storage.

MinIO is already the most popular S3 compatible object storage provider for applications running in the cloud and on prem. And VMware is easily the most popular virtualization platform on the planet. Now with the two together on VCF Tanzu, there seems to be nothing in the way of conquering containerized applications running in IT as well.

With that, MinIO is available everywhere containers want to run, natively available in the cloud, on prem and hybrid cloud or running with VCF Tanzu everywhere as well.


AB Periasamy, CEO MinIO

AB Periasamy is the CEO and co-founder of MinIO. One of the leading thinkers and technologists in the open source software movement,

AB was a co-founder and CTO of GlusterFS which was acquired by RedHat in 2011. Following the acquisition, he served in the office of the CTO at RedHat prior to founding MinIO in late 2015.

AB is an active angel investor and serves on the board of H2O.ai and the Free Software Foundation of India.

He earned his BE in Computer Science and Engineering from Annamalai University.


This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png
This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png