108: GreyBeards talk DNA storage with David Turek, CTO, Catalog DNA

The Greybeards get off the beaten (enterprise) path this month, to see what lies ahead with a discussion on DNA storage. David Turek, CTO, Catalog DNA (@CatalogDNA) is a long time IBMer that had been focused on HPC systems at IBM but left and went to Catalog DNA to pursue the commercialization of DNA storage, an “emerging” technology. CatalogDNA is a company out of Boston that had recently closed a round of funding and are focused on bringing DNA storage out into the world of IT.

David was a pleasure to talk and has lot’s of knowledge on HPC and enterprise data center solutions. He also has a good grasp of what it will take to bring DNA storage to market. Keith has had some prior experience with DNA technologies in BioPharma so could talk in more detail about the technology and its ecosystem. [We’re trying out a new format, let us know what you think; The Eds.]

Ray has written about DNA storage in his RayOnStorage Blog, most recently in April of this year and May of last year. It’s been an ongoing blog topic of his for almost a decade now. When Ray was interviewed about the technology he thought it interesting but had serious obstacles with read and write latencies and throughput as well as the size of the storage device.

Well CatalogDNA seems to have got a good handle on write throughput and are seriously working on the rest.

However, DNA storage’- volumetric density was always of exceptional. Early on in the podcast, David mentioned that DNA storage was 6 orders of magnitude (1 million times) more dense in bytes/mm**3 than magnetic tape today. An LTO8 tape device stores 12TB (uncompressed) in a tape cartridge, 14.2 in**3 (230.3 cm**3) or roughly 845GB/in**3 (52GB/cm**3). One million times this, would be 12EB in the same volume.

The challenge with LTO8, disk or SSD storage today is at some point you have to move the data from one device to a more modern device. This could be every 3-5 years (for disk or SSD) or 25-30 years for tape. In either case, at some point IT would need to incur the cost and time to move the data. Not much of a problem for 100TB or so but when you start talking PB or EB of data, it can be a never ending task.

DNA storage

David mentioned Catalog uses “synthetic DNA” in their storage. This means the DNA it uses is designed to be incompatible with natural DNA such that it wouldn’t work in a cell. It has stops or other biological mechanisms to inhibit it’s use in nature. Yes it uses the same sugars, backbones, and other chemistry of biologically active DNA, but it has been specifically modified to inhibit its use by normal cellular machinery. 

DNA storage has a number of unique capabilities :

  • It can be made to last forever, by being dried out (dessicated) and encased in a crystal and takes 0 power/energy to be stored for eons.
  • It can be cheaply and easily replicated, almost an infinite number of times, for only the cost of chemical feedstock, chemical interactions and energy. Yes, this may take time but the process scales up nicely. One could make 2 copies in first cycle, 4 in the 2nd, 8 in the 3rd, etc and by doing this it would only take 20 cycles to create a million copies. If each cycle takes 10 minutes, in 3:20, you could have a million copies of 1EB of data.
  • It can be easily searched for target information. This involves fabricating a DNA search molecule and inserting it into the storage solution. Once there it would match up with the DNA segment that held your key. And of course, the search molecule and the data could be replicated to speed up any search process.
  • We already mentioned the extreme density advantage above.

Speed of DNA storage access

David said they can already write Catalog DNA storage in MB/sec.

The process they use to write is like a conveyer belt which starts off with a polyethylene sheet (web actually). Somewhere, the digital data comes in, is chunked and transformed into DNA strand (25-50 base pairs) molecules or dots. The polyethylene sheet rolls into a machine that uses multiple 3D print heads to deposit dots (the DNA strand data chunks) at web points. This machine/process deposits 100K or more of these dots onto the web. The sheet then moves to the next stage where the DNA molecules are scraped off and drained into a solution. Then a wet process occurs which uses chemistry to make the DNA more readable and enables the separate DNA molecules to connect into a data strand. Then this data strand goes into another process where it gets reduced in volume and so that it is more stable.

If needed, one can add another step that dries out or desiccates the data strand into even a smaller volume which can then be embedded into a crystalline structure which could last for centuries.

David compared the DNA molecules (data chunks) to Legos, only they are the same pieces in a million different colors Each piece represents some segment of data bits/bytes. Using chemistry and proprietary IP each separate DNA molecule self organizes (connects) into a data strand, representing the information you want to store.

Reading DNA involves, off the shelf, DNA sequencers. The one Catalog currently uses is the Oxford NanoPore device, but there are others. David didn’t say how fast they could read DNA data. But current DNA reading devices destroy the data. So making replicas of the data would be required to read it.

David said their current write device is L shaped with one leg about 14’ (4.3m) long and the other about 12’ (3.7m) long with each leg being about 3’ (0.9m) wide.

Searching EB of data in minutes?!

DNA strands can be searched (matched) using a search molecule and inserting this into the storage solution (that holds the data strands). Such a molecule will find a place in the data that has a matching (DNA) data element and I believe attach itself to the data strand.

For example, lets say you had recorded all of a country’s emails for a month or so and you wanted to search them for the words, “bomb”, “terrorist”, “kill”, etc. One could create a set of search molecules, replicate them any number of times (depending on how quickly you wanted to search the data and how many matches you expected), and insert them into a data pool with multiple data strands that stored the email traffic.

After some time, you’d come back and your search would be done. You’d need to then extract the search hits, and read out the portion of the data strands (emails) that matched. I’m guessing extraction would involve some sort of (wet) chemical process or filtration.

State of Catalog DNA storage

David mentioned that as a publicity stunt they wrote the whole Wikipedia onto Catalog DNA storage. The whole Wikipedia fit into a cylinder about the height of a big knuckle on your hand and in a width smaller than a finger. The size of the whole Wikipedia, with complete edit history is 10TB uncompressed and if they stored all the edit versions plus its media such as images, videos, audio and other graphics, that would add another 23TB (as of end of 2014), so ~33TB uncompressed.

David believes in 18 months they could have a WORM (write once, read many times) data storage solution that could be deployed in customer data centers which would supply immense data repositories in relatively small solution containers.

CatalogDNA is currently in a number of PoCs with major corporations (not labs or universities) to show how DNA storage technology can be used to solve problems.

David believes that at some point they will be able to make compute engines entirely of DNA. At that point, one could have a combined compute and storage (HCI-like) DNA server using the same technology in a solution. And as mentioned previously, one could replicate from one DNA server & storage to a million DNA servers & storage in just 20 cycles. How’s that for scale out.


David Turek, CTO Catalog DNA

Dave Turek is Catalog’s Chief Technology Officer. He comes to Catalog from IBM where he held numerous executive positions in High Performance Computing and emerging technologies.

He was the development executive for the IBM SP program which produced the first commercially successful massively parallel system; he started IBM’s Linux Cluster business; launched an early offering in Cloud computing called Deep Computing Capacity on Demand; produced the Roadrunner system, the world’s first petascale computer; and was responsible for IBM’s exascale strategy which led to the deployment of the Summit and Sierra systems at Oak Ridge and Lawrence Livermore National Laboratories respectively.

David has been invited to testify to Congress on numerous occasions regarding the future of computing in the US and has helped establish technical collaborations with universities, businesses, and government agencies around the world.

This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png
This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png


107: GreyBeards talk MinIO’s support of VMware’s new Data Persistence Platform with AB Periasamy, CEO MinIO

Sponsored by:

The GreyBeards have talked with Anand Babu (AB) Periasamy (@ABPeriasamy), CEO MinIO, before (see 097: GreyBeards talk open source S3… episode). And we also saw him earlier this year, at their headquarters for Storage Field Day 19 (SFD19) where AB gave a great discussion of what they were doing and how it worked (see MinIO’s SFD18 presentation videos).

The podcast runs ~26 minutes. AB is very technically astute and always a delight to talk with. He’s extremely knowledgeable about the cloud, containerized applications and high performing S3 compatible object storage. And now with MinIO and vSAN Data Persistence under VCF Tanzu, very knowledgeable about the virtualized IT environment as well. Listen to the podcast to learn more. [We’re trying out a new format placing the podcast up front. Let us know what you think; The Eds.]


VMware VCF vSAN Data Persistence Platform with MinIO

Earlier this month VMware announced a new capability available with the next updates of vSAN, vSphere & VCF called the vSAN Data Persistence Platform. The Data Persistence Platform is a VMware framework designed to integrate stateful, independent vendor software defined storage services in vSphere. By doing so, VCF can provide API access to persistent storage services for containerized applications running under Tanzu Kubernetes (k8s) Grid service clusters.

At the announcement, VMware identified three object storage and one (Cassandra) database technical partners that had been integrated with the solution.  MinIO was an object storage, open source partner.

VMware’s VCF vSAN Data Persistence framework allows vCenter administrators to use vSphere cluster infrastructure to configure and deploy these new stateful storage services, like MinIO, into namespaces and enables app developers direct k8s API access to these storage namespaces to provide persistent, stateful object storage for applications. 

With VCF Tanzu and the vSAN Data Persistence Platform using MinIO, dev can have full support for their CiCd pipeline using native k8s tools to deploy and scale containerized apps on prem, in the public cloud and in hybrid cloud, all using VCF vSphere.

MinIO on the Data Persistence Platform

AB said MinIO with Data Persistence takes advantage of a new capability called vSAN Direct which gives vSAN almost JBOF types of IO control and performance. With MinIO vSAN Direct, storage and k8s cluster applications can co-reside on the same ESX node hardware so that IO activity doesn’t have to hop off host to be performed. In addition, can now populate ESX server nodes with lots (100s to 1000s?) of storage devices and be assured the storage will be used by applications running on that host.

As a result, MinIO’s object storage IO performance on VCF Tanzu is very good due to its use of vSAN Direct and MinIO’s inherent superior IO performance for S3 compatible object storage.

With MinIO on the VCF vSAN Data Persistence Platform, VMware takes over all the work of deploying MinIO software services on the VCF cluster. This way customers can take advantage of MiniO’s fully compatible S3 object storage system operating in their VCF cluster. For app developers they get the best of all worlds, infrastructure configured, deployed and managed by admins but completely controllable, scaleable and accessible through k8s API services.

If developers want to take advantage of MinIO specialized services such as data security or replication, they can do so directly using MinIOs APIs, just like they would when operating bare metal or in the cloud.

AB said the VMware development team was very responsive during development of Data Persistence. AB was surprised to see such a big company, like VMware, operate with almost startup like responsiveness. Keith mentioned he’s seen this in action as vSAN has matured very rapidly to a point of almost feature parity, with just about any storage system out there today .

With MinIO object storage, container applications that need PB of data, now have a home on VCF Tanzu. And it’s as easily usable as any public cloud storage. And with VCF Tanzu configuring and deploying the storage over its own infrastructure, and then having it all managed and administered by vCenter admins, its simple to create and use PB of object storage.

MinIO is already the most popular S3 compatible object storage provider for applications running in the cloud and on prem. And VMware is easily the most popular virtualization platform on the planet. Now with the two together on VCF Tanzu, there seems to be nothing in the way of conquering containerized applications running in IT as well.

With that, MinIO is available everywhere containers want to run, natively available in the cloud, on prem and hybrid cloud or running with VCF Tanzu everywhere as well.


AB Periasamy, CEO MinIO

AB Periasamy is the CEO and co-founder of MinIO. One of the leading thinkers and technologists in the open source software movement,

AB was a co-founder and CTO of GlusterFS which was acquired by RedHat in 2011. Following the acquisition, he served in the office of the CTO at RedHat prior to founding MinIO in late 2015.

AB is an active angel investor and serves on the board of H2O.ai and the Free Software Foundation of India.

He earned his BE in Computer Science and Engineering from Annamalai University.


This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png
This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png


106: Greybeards talk Intel’s new HPC file system with Kelsey Prantis, Senior Software Eng. Manager, Intel

We had talked with Intel at Storage Field Day 20 (SFD20), about a month ago. At the virtual event, Intel’s focus was on their Optane PMEM (persistent memory) technology. Kelsey Prantis (@kelseyprantis), Senior Software Engineering Manager, Intel was on the show and gave an introduction into Intel’s DAOS (Distributed Architecture Object Storage, DAOS.io) a new HPC (high performance computing, super computers) file system they developed from scratch to use leading edge, Intel technologies, and Optane PMEM was one of them.

Kelsey has worked on LUSTRE and other HPC file systems for a long time now and came into the company from the acquisition of Whamcloud. Currently, she manages the development team working on DAOS. DAOS is a new HPC object storage file system which is completely open source (available on GitHub).

DAOS was designed from the start to take advantage of NVMe SSDs and Optane PMEM. With PMEM, current servers can support up to 20TB of memory. Besides the large memory sizes, Optane PMEM also offers non-volatile memory and byte addressability (just like DRAM). These two characteristics opens up new functionality that allows DAOS to move beyond legacy, block oriented, storage architectures that have been the only storage solution for HPC (and the enterprise) for decades now.

What’s different about DAOS

DAOS uses PMEM for all metadata and for storing small files. HPC IO has always focused on heavy bandwidth (IO using large blocks) oriented but lately newer applications have emerged, such as AI/ML/DL, data analytics and others, that use smaller files/blocks. Indeed, most new HPC clusters and supercomputers are deploying almost as many GPUs as CPUs in their configurations to support AI activities.

The problem is that these newer applications typically consume much smaller files. Matt mentioned one HPC client he worked with was processing small batches of seismic data, to predict, in real time, earthquakes that were happening around the world.

By using PMEM for metadata and small files, DAOS can be much more responsive to file requests (open, close, delete, status) as well as provide higher performing IO for small files. All this leads to a much better performing system for the new HPC workloads as well as great sustainable performance for the more traditional large file workloads.

DAOS storage

DAOS provides a cluster storage system that can be configured with from 1 (no data protection), but more normally 3 nodes (with data protection) at a minimum to 512 nodes (lab tested). Data protection in DAOS is currently based on mirroring data and can use from 0 to the number of nodes in a cluster as data mirrors.

DAOS system nodes are homogeneous. That is they all come with the same amount of PMEM and NVMe SSDs. Note, DAOS doesn’t support disk drives. Kelsey mentioned DAOS node hardware can be tailored to suit any particular application environment. But they typically require an average of 6% of overall DAOS system capacity in PMEM for metadata and small file activity.

DAOS current supports their own API, POSIX, HDFS5, MPIIO and Apache Spark storage protocols. Kelsey mentioned that standard POSIX uses a pessimistic conflict resolution mode which leads to performance bottlenecks during parallel access. In contrast, DAOS’s versos of POSIX uses optimistic conflict resolution, which means DAOS starts writes assuming there’s no conflict, but if one occurs it handles the conflict in real time. Of course with all the metadata byte addressable and in PMEM this doesn’t take up a lot of (IO) time.

As mentioned earlier, DAOS data protection uses mirror-replicas. However, unlike most other major file systems, DAOS mirroring can be done at the object level. DAOS internally is an object store. Data organization on DAOS starts at the pool level, underneath that is data containers, and then under that are objects. Any object in DAOS can have its own mirroring configuration. DAOS is working towards supporting Erasure Coding as another form of data protection for a future release.

DAOS performance

There’s a new storage benchmark that was developed specifically for HPC, called the IO500. The IO500 benchmark simulates a number of different HPC workloads, measures performance for each of them, and computes an (aggregate) performance score to rank HPC storage systems.

IO500 ranks system performance using two lists: one is for any sized configuration that typically range from 50 to 1000s of nodes and their other list limits the configuration to 10 nodes. The first performance ranking can sometimes be gamed by throwing more hardware into a cluster. The 10 node rankings are much harder to game this way and from our perspective, show a fairer comparison of system performance.

As presented (virtually) at ISC 2020, DAOS took the top spot on the IO500 any size configuration list and performed better than 2X the next best solution. And on the IO500 10 node list, Intel’s DAOS configuration, Texas Advanced Computing (TAC) DAOS configuration, and Argonne Nat Labs DAOS configuration took the top 3 spots and had 3X better performance than the next best, non-DAOS storage system.

The Argonne National Labs has already stated that they will be using DAOS in their new HPC system to be deployed in the near future. Early specifications for storage at the new Argonne Lab required support for 230PB of data and 25TB/sec of bandwidth.

The podcast ran ~43 minutes. Kelsey was great to talk with and very knowledgeable about HPC systems and HPC IO in particular. Matt has worked at Argonne in the past so understood these systems better than I. Sadly, we lost Matt’s end of the conversation about 1/2 way into the recording. Both Matt and I thought that DAOS represents the birth of a new generation of HPC storage. Listen to the podcast to learn more.


This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png

This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png
This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png

Kelsey Prantis, Senior Software Engineering Manager, Intel

 Kelsey Prantis heads the Extreme Storage Architecture and Development division at Intel Corporation. She leads the development of Distributed Asynchronous Object Storage (DAOS), an open-source, low-latency and high IOPS object store designed from the ground up for massively distributed Non-Volatile Memory (NVM).

She joined Intel in 2012 with the acquisition of Whamcloud, where she led the development of the Intel Manager for Lustre* product.

Prior to Whamcloud, she was a software developer at personal genomics and biotechnology company 23andMe.

Prantis holds a Bachelor’s degree in Computer Science from Rochester Institute of Technology

103: GreyBeards talk scale-out file and cloud data with Molly Presley & Ben Gitenstein, Qumulo

Sponsored by:

Ray has known Molly Presley (@Molly_J_Presley), Head of Global Product Marketing for just about a decade now and we both just met Ben Gitenstein (@Qumulo_Product), VP of Products & Solutions, Qumulo on this podcast. Both Molly and Ben were very knowledgeable about the problems customers have with massive data troves.

Molly has been on our podcast before (with another company, see: GreyBeards talk HPC storage with Molly Rector, CMO & EVP, DDN ). And we have talked with Qumulo before as well (see: GreyBeards talk data-aware, scale-out file systems with Peter Godman, Co-founder & CEO, Qumulo ).

Qumulo has a long history of dealing with customer issues with data center application access to data, usually large data repositories, with billions of small or large files, they have accumulated over time. But recently Qumulo has taken on similar problems in the cloud as well.

Qumulo’s secret has always been to allow researchers to run their applications wherever their data resides. This has led Qumulo’s software defined storage to offer multiple protocol access as well as a completely native, AWS and GCP cloud version of their solution.

That way customers can run Qumulo in their data center or in the cloud and have the same great access to data. Molly mentioned one customer that creates and gathers data using SMB protocol on prem and then, after replication, processes it in the cloud.

Qumulo Shift

Ben mentioned that many competitive storage systems are business model focused. That is they are all about keeping customer data within their solutions so they can charge for capacity. Although Qumulo also charges for capacity, with the new Qumulo Shift service, customer can easily move data off Qumulo and into native cloud storage. Using Shift, customers can free up Qumulo storage space (and cost) for any data that only needs to be accessed as objects.

With Shift, customers can replicate or move on prem or in the cloud Qumulo file data to AWS S3 objects. Once in S3, customers can access it with AWS native applications, other applications that make use of AWS S3 data, or can have that data be accessible around the world.

Qumulo customers can select directories to Shift to an AWS S3 bucket. The Qumulo directory name will be mapped to a S3 bucket name and each file in that directory will be copied to an S3 object in that bucket with the same file name.

At the moment, Qumulo Shift only supports AWS S3. Over time, Qumulo plans to offer support for other public cloud storage targets for Shift.

Shift is based on Qumulo replication services. Qumulo has a number of patents on replication technology that provides for sophisticated monitoring, control and high performance for moving vast amounts of data.

How customers use Shift

One large customer uses Qumulo cloud file services to process seismic data but then makes the results of that analysis available to other clients as S3 objects.

Customers can also take advantage of AWS and other applications that support objects only. For example, AWS SageMaker Machine Learning (ML) processes S3 object data. Qumulo customers could gather training data as files and Shift it to S3 objects for ML training.

Moreover, customers can use Shift to create AWS S3 object backups, archives and DR repositories of Qumulo file data. Ben mentioned DevOps could also use Qumulo Shift via APIs to move file data to S3 objects as part of new application deployment.

Finally, using Shift to copy or move file data to AWS S3, makes it ideal for collaboration by researchers, analysts and just about other entity that needs access to data.

The podcast ran ~26 minutes. Molly has always been easy to talk with and Ben turned out also to be easy to talk with and knew an awful lot about the product and how customers can use it. Keith and I enjoyed our time with Molly and Ben discussing Qumulo and their new Shift service. Listen to the podcast to learn more.

This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png
This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png

Ben Gitenstein, VP of Products and Solutions, Qumulo

Ben Gitenstein runs Product at Qumulo. He and his team of product managers and data scientists have conducted nearly 1,000 interviews with storage users and analyzed millions of data points to understand customer needs and the direction of the storage market.

Prior to working at Qumulo, Ben spent five years at Microsoft, where he split his time between Corporate Strategy and Product Planning.

Molly Presley, Head of Global Product Marketing, Qumulo

Molly Presley joined Qumulo in 2018 and leads worldwide product marketing. Molly brings over 15 years of file system and archive technology leadership experience to the role.

Prior to Qumulo, Molly held executive product and marketing leadership roles at Quantum, DataDirect Networks (DDN) and Spectra Logic.

Presley also created the term “Active Archive”, founded the Active Archive Alliance and has served on the Board of the Storage Networking Industry Association (SNIA).

0102 GreyBeards talk big memory data with Charles Fan, CEO & Co-founder, MemVerge

It’s been a couple of months since we last talked with a startup, so the GreyBeards thought it was time. We reached out to Charles Fan (@CharlesFan14), CEO and Co-Founder of MemVerge to find out about their big memory solution or as Charles likes to call it, “software defined (big) memory”. Although neither Matt or I had ever talked with Charles before, he’s been just about everywhere in the storage industry throughout his career.

If you have been following my RayOnStorage blog you will have seen a post (Need memory, Intel’s Optane DC PM to the rescue) last year on Intel’s new Persistent Memory solutions using 3D XPoint, called Optane DC PM (data center, persistent memory) . At the announcement Intel made available a couple of ways customers could use Optane DC PM (PMem).

Optane DC PM primer

Native Optane DC PM access modes include:

  • A Memory Mode, which has Pmem emulating a large volatile memory space and uses a defined ratio of DRAM to PMem as a cache to access the Optane DC PM memory behind it.
  • An Application Direct (AppDirect) Mode which supports two sub-modes: a storage device mode that uses Pmem to emulate a persistent, 4KB block storage device; and a byte addressable, persistent memory address space mode that uses Pmem to emulate a large, non-volatile memory space . AppDirect memory content persists across boots, power failures and other system crashes.

Native PMem modes are selectected in the BIOS and are deployed at Boot time. Optane DC PM on a server can be split up into any of the three modes. And currently with Optane DC PM (Gen 1), a single server can have up to 6TB of DC PM which will go up to 8TB with Optane DC PM Gen 2 coming out later this year.

MemVerge Memory Machine

MemVerge has written a “software defined memory” service called the Memory Machine, that sits above the Intel Optane DC PM in server(s) and provides application access AND data services for PMem. .

Charles likens their Memory Machine to what VMware did for CPU cores, ie. they provide memory virtualization. This, Charles believes will bring on the age of Big Memory applications. He feels that PMem, with Memory Machine on top of it, will eliminate the need for high performance, tier 0 storage. Tier 0 storage is ~$10B market today, which he sees shifting from networked storage to PMem solutions. 

Memory Machine Data Services

One of the data services that the Memory Machine offers is a Pmem snapshot service. PMem thick or thin snapshots can be taken any (infinite) number of times (for thick snapshots storage space availability may limit their number) and can be taken up to once per minute. PMem thin snapshots take little time to accomplish and are very PMem space efficient but thick snapshots are a PMem to PMem copy of data, which will take longer to accomplish and will take double the memory of the original PMem being snapshot.

One significant use case for Pmem snapshots is for checkpoint crash recovery. Charles mentioned many securities and financial analysis firms use KDB as streaming data base service to monitor/analyze market activity and provide automated trading and other market services. These firms are always trying to gain an advantage through speed and reduced latency and as a result have moved their time sensitive processing to use in memory data structures/databases.

However, because checkpointing for crash recovery takes time, they usually checkpoint in memory databases only once a day (after market close) and maintain a log of database transactions on SSD. If there’s a system crash, they reload the last checkpoint and re-play all the transaction logs since that checkpoint to bring their in memory database back to the point of crash. Due to the number of transactions these firms do, this sort of crash recoverys can take hours.

With Memory Machine, these customers can take in memory checkpoints every minute and in the event of a crash, only have to re-play a minutes worth of transaction logs which could be done in no time to get back up

Other environments do similar checkpoint crash recoveries all of which could also take advantage of PMem snapshots to take more frequent checkpoints. Charles mentioned Rendering farms on the podcast but long scientific simulations (HPC) and others use checkpoints for crash recovery.

Another data (or application) service offered by Memory Machine is application cloning. Most in memory applications are single threaded. meaning they can only take advantage of a single CPU core (thread). In order to speed up processing, customers must shard (split up) or copy their database and application onto other servers/CPU/cores to provide more processing power. Memory Machine can use its thick or thin snapshots to clone applications in seconds.

Charles also mentioned that Memory Machine offers PMem dynamic reconfiguration. That is instead of having to make BIOS changes and re-boot server(s) to re-allocate PMem across different applications, Memory Machine is allocated 100% of the PMem at boot time but then, on demand, anytime its operating, operators using MemVerge’s GUI/CLI can carve Pmem up into any number of application memory spaces. That is as application demand for in memory data changes, operations can use the Memory Machine to re-allocate PMem to keep up.

Memory Machine also supports PMem clustering or scaling across servers. With the current 6TB (and soon 8TB) per server PMem limit, some customer applications still run out of memory. Memory Machine is able to cluster or aggregate PMem across up to 32 servers to support a single larger, PMem address space of 192TB (Gen 1) or 256TB (Gen 2) DC PM. The Memory Machine uses an RDMA (RoCE Ethernet or InfiniBand) cluster interconnect which adds ~1 microsecond of overhead to access PMem in another server. This comes with PMem automatic data tiering using DRAM, local (on the server) PMem and remote (across cluster interconnect) PMem.

Charles mentioned another data service provided by Memory Machine is (Synch or Asynch) replication. One use case for replication is to create a Pub-Sub service for market data.

Charles believes that in memory databases and data processing workloads are just starting to become popular these days. Besides KDB and rendering, other data processing such as AI training/inferencing, Reddis applications, and other database systems are able to take advantage of in memory, large data structures to speed up their data processing

MemVerge’s EAP (early access program) opened up recently (5/19/2020). Charles suggested anyone using large, in memory data processing, take a look at what the Memory Machine can do and contact them to sign up.

The podcast runs ~45 minutes. Charles was very articulate as well as knowledgeable about the technology and its applications. He was great to talk tech with. Matt and I had a fun time talking Optane DC PM and Memory Machine functionality/applications with him. Listen to the podcast to learn more.

Charles Fan, CEO & Co-founder, MemVerge

Charles Fan is co-founder and CEO of MemVerge. Prior to MemVerge, Charles was a SVP/GM at VMware, founding the storage business unit that developed the Virtual SAN product.

Charles also worked at EMC and was the founder of the EMC China R&D Center. Charles joined EMC via the acquisition of Rainfinity, where he was a co-founder and CTO.

Charles received his Ph.D. and M.S. in Electrical Engineering from the California Institute of Technology, and his B.E. in Electrical Engineering from the Cooper Union.