119: GreyBeards talk distributed cloud file systems with Glen Shok, VP Alliances,Panzura

This month we turn to distributed (cloud) filesystems as we talk with Glen Shok (@gshok), VP of Alliances for Panzura. Panzura uses backend (cloud or onprem, S3 compatible) object store with a ring of software (VMs) or hardware (appliance) gateways that provides caching for local files as well as managing and maintaining metadata which creates a global NFS and SMB file system with near local access times.

Glen is an industry (without the grey beard) veteran with the knowledge to back that up. He’s been in the industry so long that we could probably have spent an hour just talking about where people are that we both know. Listen to the podcast to learn more

The interesting part about Panzura is their gateway ring. It not only manages local file caching and metadata maintenance/access, but it provides an out-of-(data path)-band file (byte range) lock coordination service, cache coherency (via delta block changes) and other services. All the metadata (and data) is backed up on backend object storage, but it’s the direct access to the metadata and its out of band control path as well as its caching service that supplies the near local access times for data.

Panzura supports any public (AWS, Azure, GCP & IBM) cloud object storage for backend data storage as well as a few, on prem, solutions (I think Glen mentioned IBM COS & Cloudian and their website mentions Wasabi, Scality and NetApp StorageGrid). Glen said they are on each of the public cloud’s marketplaces and with virtual gateways, its very easy to spin up and try.

Their system provides global (local, at the gateway) dedupe to reduce backend storage footprint and (both out of band and from backend storage) delta block changes for local cache updates. So in the event that an old version of the file happens to be present in their local cache gateway, it only needs retrieve the changed data from the object storage backend (or another gateway). All this local caching, dedupe and changed block tracking, helps to reduce cloud egress charges.

Data written to backend storage is immutable and versioned. So customers can retrieve any version of any file that was ever destaged to their backend. Glen said they write huge objects, presumably to help reduce storage footprint, IO overhead and API calls.

Glen claimed what with 3-way replication within a cloud region and 1-way replication outside the cloud region, customers no longer have to backup data. I respectively disagreed. He believes over time, customers will come to realize their use of backups for restores, becomes so rare that they can reduce backup frequency, if not eliminate it altogether. Some follow on discussion ensued, but in the end we seemed to agree to disagree on this topic.

Panzura also supports cross cloud mirroring. So, one could have their data mirrored from one cloud to another. One of these clouds will be used as a primary and only in the event that a majority of the gateway rings agree that the primary is DOWN and the secondary is UP, will they all automatically cut over to using the secondary storage cloud. While failover is automated, fail back requires operator intervention.

Panzura is charged for on managed data capacity. But cloud or on prem object storage is in addition to this and is charged for separately by the object storage provider.

As far what size file systems they support, Glen mentioned that they are ZFS internally, so any size imaginable. But he did concede, that at some point, metadata management becomes a problem and that they often suggest splitting apart 20PB file systems into 2 10PB (gateway rings) file systems to deal with this issue.

As for other solutions offered by Panzura, they have a K8s container block storage for persistent volumes that scales in capacity/performance using K8s services/resources.

Glen Shok, VP Alliances, Panzura

Glen Shok has been in the data center and storage industry for over 20 years.

Starting his career at Cisco in the late 90s. Moving to a few startups which were acquired by Brocade and Oracle. Glen has held positions in sales, sales leadership, product management and marketing, and Office of the CTO at Zones, prior to coming to Panzura.

He can’t decide what he likes to do, but at Panzura, he’s the VP of Strategic Alliances.

118: GreyBeards talks cloud-native object storage with Greg DiFraia, Scality and Stephen Bacon, HPE

Sponsored By:

And

Keith and I have talked with Stephen Bacon, Senior Director, Big Data Category, HPE, before (not on our podcast) but not Greg DiFraia, GM Americas, Scality. Both were very knowledgeable about how containerization is changing IT and the role of object storage in this transition. Scality’s ARTESCA, takes this changed world view to its logical conclusion, with a new, light-weight, cloud-native object storage system for Kubernetes (K8s) that is optimized to store and manage data, edge to core to cloud.

This is a significant joint Scality-HPE solution that has been a long time coming. As evidence of the level of the partnership between the two, ARTESCA will be exclusive to HPE for the next six months. Listen to the podcast to learn more.

We started our discussion on where the new IT world is going. It’s more of an application centric view, that spans multiple distinct infrastructure environments. New applications that live in this new IT world consume lots of data and more often than not, that data resides on object storage. And just like the developers are creating K8s container apps so they can scale easily, any object storage those apps access , needs similar scalability.

This means that edge solutions like smart cars, smart drones, smart sensors, etc. are doing some serious work. Some smart cars are producing a TB of data a day, all of which needs to be analyzed to adjust safe driving algorithms or to re-train AI/ML/DL neural networks.

Moreover, edge apps today are increasingly deploying embedded AI/ML/DL inferencing. That means the days of frozen/archived data are going away. With embedded AI, there’s an ongoing need to re-train on new (and old) data which requires all data to be readily (and speedily) accessible.

Scality has always been strong in high performance, multi-PB environments that needed rock-solid reliability and availability. And over time, they expanded their solution to access cloud data storage resources as well. But ARTESCA goes after a new market entirely. with a light weight, edge to core to cloud deployable object store, that can run anywhere, start small and grow as large as needed.

ARTESCA, Scality’s new cloud native object storage solution comes as a full stack, distributed collection of container based micro-services that runs on K8s. This includes not only object storage services but also a data management control plane.

The management control plane allows for the ingestion and use of any S3 compatible storage to hold ARSTECA data. But it also includes workflow actions that supply automated data movement between locations, data synchronization between sites and other services used to deploy, coordinate, and manage an edge, core and cloud solution as a single object storage environment.

ARSTECA runs on a number of different HPE hardware platforms from scale-out 1U servers optimized for server density, good compute-storage performance for general purpose workloads to a cluster in a box, 2U 4 server solutions that can provide huge amounts of compute-storage horsepower in a small form-factor environment. 

Stephen Bacon,  Senior Director, Big Data Category, HPE,

Stephen leads the Big Data Category, a rapidly growing multi-hundred million dollar business within HPE Storage comprised of the Apollo 4000 family of intelligent data storage servers, data analytics solutions, and the Complete Program of software partner-based solutions including with Cohesity, Commvault, Qumulo, Scality, and Veeam.

His responsibilities span Product Management, Engineering Program Management, Integration Engineering, Partner Go-To-Market, and Partner Operations.

Stephen has held a variety of worldwide, Asia Pacific and Japan region, and New Zealand country roles spanning software, servers, storage, and partnerships in his more than 20 year IT industry career.

Greg DiFraia, GM Americas, Scality

Greg has been working in the Enterprise IT Solutions Market for over 20 years and brings a unique blend of technical and business leadership to the team at Scality.

Before joining Scality, Greg was VP of Strategic Alliances at Turbonomic, a hybrid cloud workload automation developer. There, he had a front-row seat to see the emerging challenges of multi-cloud; experience that has huge value in today’s multi-cloud world.

Having spent the 13 years prior to that with EMC/Dell EMC as Global Sales leader for Object Storage, Director of Sales Strategy for Mid Market business, and, most recently, CTO, Elastic Cloud Storage (ECS), Greg led the global sales strategy for the ECS software-defined storage platform.

116: GreyBeards talk VCF on VxBlock 1000 with Martin Hayes, DMTS, Dell Technologies

Sponsored By:

This past week, we had a great talk with Martin Hayes (@hayes_martinf), Distinguished Member Technical Staff at Dell Technologies about running VMware Cloud Foundation (VCF) on VxBlock 1000 converged infrastructure (CI). It used to be that Cloud Foundation required VMware vSAN primary storage but that changed a few years ago. . When that happened, the Dell Technologies team saw it as a great opportunity to support VCF on VxBlock CI.

This is the first GreyBeards podcast for Martin, but he was extremely knowledgeable about VxBlock and Cloud Foundation technologies. He’s been a technical product manager on the VxBlock converged infrastructure at Dell Technologies for many years. He’s an expert on Cloud Foundation and he knows an awful lot more about VMware NSX-T networking than seems reasonable (good thing). In any case, Martin’s expertise covers the whole gamut of VCF services as well as VxBlock 1000 infrastructure. The podcast is a bit longer than our normal sponsored podcast but there was a lot of information to cover. Listen to the podcast to learn more.

With VCF enabling primary storage on networked storage systems, all the storage vendors in the world gave a mighty cheer. But VMware Cloud Foundation still requires the vSAN servers to run its management domain. Late in 2020, VxBlock 1000 from Dell Technologies released a new software defined version of its Advanced Management Platform (AMP) to run on vSAN Ready Nodes. AMP is VxBlock’s management platform but also runs management domains for VCF and NSX-T.

For workload domains, VxBlock 1000 offers Cisco UCS M5 rack and blade servers, that can be configured to support just about any workload needed by a data center.

Historically, VMware vSphere problems with DR weren’t as much storage replication issues as networking problems. But NSX-T and VCF seemed to have solved that problem.

And with vRealize Automation plugins and NSX-T APIs, customers can have 0 touch network provisioning which enables the use of IaaS or infrastructure as code for their data center.

VMware vVOLs are now available with Dell EMC PowerMax storage. So, now VxBlock 1000 customers can use vSphere storage policy-based management (SPBM) as well as automated vVOL replication for data on PowerMax.

VMware NSX-T implements Application Virtual Networks (AVNs) using a GENEVE overlay network, which make extensive use of encapsulation. But where there’s encapsulation, de-encapsulation must follow to access outside networks. All this (encapsulation on ingress, de-encapsulation on egress) is done through NSX-T Edge clusters.

The net result of all this is that VMware customers have more choice, i.e., now they can run VCF on HCI or CI. And with VxBlock 1000 CI, VCF customers can select a best of breed components for each level of their 3-tier infrastructure.

Martin Hayes, DMTS, Dell Technologies

Martin Hayes is a Technical Product Manager at Dell Technologies, where he develops and executes data center product strategies that incorporate virtualization, software-defined networking (SDN) and converged systems.

Previously, he served in network advisory and architect roles at Dell EMC, converged systems pioneer VCE and Irish broadband provider eircom.

113: GreyBeards talk storage for next gen. workloads with Liran Zvibel, Co-Founder & CEO WekaIO

Sponsored By:

I’ve known Liran Zvibel, Co-founder and CEO of Weka IO for many years now and it’s the second time he’s been on our show, (see: Episode 56: GreyBeards talk high performance file storage...). In those days, WekaIO was just coming out and hitting the world with this extremely high-performing, scale out unstructured data solution. Well since then, they’ve just gotten better.

Keith and I had a great time talking with Liran again. Liran has deep knowledge about unstructured data and how enterprises use it these days. WekaIO’s story, over the last two years has gone beyond great performance to real world, hybrid cloud offerings e as well as going after the cloud native app’s (read Kubernetes [K8S]) persistent storage. Listen to the podcast to learn more.

We started with a history lesson on WekaIO. Back in those days (which persists today, I might add) there were many IO workloads that required companies to purchase different solutions for different work. For example, they needed DAS or SAN for performance, NAS for ease of access and object for scale. WekaIO came out with an answer to all these problems in a single, scaleable storage system. That is, they performed IO as fast as DAS or SAN block, had all the ease of access of NAS, and could scale as much as object.

However, the real culprit holding the world back was “NFS”. At the outset NFS was designed (back in the 1990s) with the then current networking speeds available (10-100Mbps), which performed just fine at those speeds. But when 10-100GbE came out in the 2000’s, NFS’s metadata overhead was too chatty to support wire speeds. Thus, any storage that depended on NFS protocols couldn’t supply (small) files fast enough for modern applications.

This is why WekaIO has moved to not only support NFS and SMB but also POSIX and NVIDIA® GPUDirect® Storage interfaces. By offering POSIX, WekaIO is able to plug into standard Linux and Windows server systems and provide excellent small file performance. Of course applications that demand small file performance today are mostly data analytics and AI/ML/DL workloads.

Consequently., NVIDIA came out with their GPUDirect Storage protocol to address getting small file (data) into GPUs faster. With GPUDirect, storage systems can RDMA data directly from storage to GPU memory and vice versa, with no OS intervention (other than to set up the transfer). If you happen to have a small file, high performing storage system attached to your fabric that supports GPUDirect , like WekaIO, you can significantly speed up your AI/ML/DL workloads.

Next we started talking K8S storage. WekaIO usestheir POSIX interface in their CSI plugin to support K8S container persistent storage. Again, supplying high performance for small files seems to be tailor made for K8S container applications that exist today and will for the foreseeable future.

Enter the cloud. Almong other things, WekaIO is a AWS primary storage vendor. It also offers snap to cloud. And with both of these in tandem, it’s just become a lot easier to move and access your unstructured data in the cloud. Liran mentioned that WekaIO primary storage in AWS operates across AZ’s. This means it can be configured to support better availability than EBS.

Large BioPharma companies are using WekaIO in AWS to store and process field data and research data, so that this work can be done around the world. Some companies have run out of compute in a single AZ (unbelievable I know but it’s COVID). By offering multi-AZ support unstructured data access with WekaIO, these companies can spread their compute across AZ’s and region and still access their data. And when their products are ready for gov’t certification, having all this data in the cloud, can make provide an easy way to have gov’t access this same data.

Liran Zvibel, Co-founder and CEO WekaIO

As Co-Founder and CEO, Mr. Liran Zvibel guides long term vision and strategy at WekaIO. Prior to creating the opportunity at WekaIO, he ran engineering at social startup and Fortune 100 organizations including Fusic, where he managed product definition, design, and development for a portfolio of rich social media applications.

Liran also held principal architectural responsibilities for the hardware platform, clustering infrastructure and overall systems integration for XIV Storage System, acquired by IBM in 2007.

Mr. Zvibel holds a BSc.in Mathematics and Computer Science from Tel Aviv University.

112: GreyBeards annual year end wrap-up with Keith & Matt

It’s the end of the year, so time for our regular year end wrap up discussion with the GreyBeards. 2020 has been an interesting year to say the least. It started out just fine, then COVID19 showed up and threw a wrench in everyone’s plans and as the year closes, we were just starting to see some semblance of the new normal, when one of the largest security breaches in years shows up. Whew, almost glad that’s over and onto 2021.

As always the GreyBeards had a great discussion on these and other topics to highlight the year just past. The talk was wide ranging and hard to characterize but I did my best below. Listen to the podcast to learn more.

COVID19s impact on the enterprise

It will probably take some time before we learn the true, long term impacts of COVID19 on IT but one major change has to be the massive Work From Home (WFH) transition that took place overnight.

While WFH can be more productive for some, the lack of face2face interaction can be challenging for others. The fact that many of the GreyBeards have been working from home for decades now, left us a bit oblivious to how jarring this transition can be for newcomers.

There’s definitely some psychological changes that need to occur to be productive at WFH. Organization skills become even more important. Structured interactions (read conference calls, zoom/webex and other forms of communication become much more important. And then there’s security.

Turns out VMware and others have been touting VDI solutions for the past decade or so to better support remote work and at the same time providing corporate levels of security for remote work. While occasionally this doesn’t work quite as well as expected, it’s certainly much much better than having end users access corporate data without any security around that data or worse yet, the “bring your own device”. All these VDI solutions had a field day when WFH happened.

Many workers found they could be more productive at WFH, due the less distractions, no commute time and more flexible hours. What happens when COVID19 is vanquished to all these current WFHers is anyone’s guess.

We thought there might be less need for large office campuses/buildings. But there’s something to be said for more collaboration and random interactions through face2face meetings that can only occur in an office setting with workers present at the same time. Some organizations will take to this new way of work while others will try to dial WFH back to non-existent. Where your organization fits on this spectrum and why, will be telling across a number of dimensions.

The rise of ARM

There’s been a slow but steady improvement in ARM processors over the last almost half century. Nowadays it’s starting to make a place for itself in the enterprise. ARH has always been the goto microprocessor for low power solutions (like smartphones) but nowadays they are being deployed in the cloud and even the enterprise. These can be used as server processors but even outside servers, ARM cores are showing up in hardware accelerators as the brains behind SmartNICs, DPUs, SPUs, etc.

Keith made mention AWS 2nd generation Graviton 64-bit ARM processor EC2 instances. And yes there’s significant cost ( & power) savings that can be had using AWS Graviton ARM instances. So the cloud is starting to adopt them. Somewhere over the past couple of years I heard that VMware was porting ESX to work on ARM cores.

But apparently, it’s not just as simple as dropping an ARM multi-core processor into a server and recompiling your code and away you go. Applications need a certain amount of optimization to run effectively on ARM processors. And the speed up between non-optimized and optimized versions of an application running on ARM cores is significant.

As for SmartNICs and DPUs, these are data networking hardware accelerators that provide real time processing capabilities needed to keep up with higher speed networking, 100GbE and beyond. These DPUs perform deep packet inspection, data compression, encryption and other services all at wire speeds.. Yes you could devote 1 or more X86 cores to do this, but it’s much cheaper (and more effective) to do this outside the CPU core. Moreover, performing this activity at the network entry point to the server means that much of this data doesn’t have to be transferred back and forth through server memory. So not only does it save CPU core cycles but also memory size and memory & PCIe bus bandwidth. We published a recent podcast with Kevin Deierling, NVIDIA Networking discussing DPUs if you want to learn more.

Pat made mention at (virtual) VMworld their plans to port ESX to the DPU. Keith followed up on this and asked some other exec’s at VMware about this and they said VMware will more likely support DPUs as just another hardware accelerator in their cluster. In either case, CPU cycles should be freed up and this should help VMware use X86 cores more efficiently. And perhaps this will help them engage in more CPU constrained environments such as Telcom.

Then there’s computational storage. We have been watching this technology for a couple of years now and it’s seeing some success in being deployed to public cloud environments. They seem to be being used to provide outboard data compression. It’s unclear whether these systems depend on ARM processing or not but my bet is that they do. To learn more about computational storage check out these podcasts, FMS2020 wrap up with Jim Handy and our talk with Scott Shadley on NGD’s computational storage.

System security

At yearend, we are learning of a massive security breach throughout US government IT facilities. All based on what is believed to be a Russian hack to a software package that is embedded in a popular networking tool software solution, SolarWinds. They are calling this a software supply chain hack. Although we are mainly hearing about government agencies being hacked, SolarWinds is also pervasive in the enterprise as well.

There have been many hardware supply chain hacks in the past, where a board supplier used chips or logic that weren’t properly vetted. Over time, hardware suppliers have started to scrutinize their supply chains better and have reduced this risk.

And the US government have been lobbying for the industry to use a security chip with a backdoor or to supply back doors to smartphone encryption capabilities. Luckily, so far, none of these have been implemented by industry.

What Russia has shown us is that this particular hack is not limited to the hardware sphere. Software supply chain risk can’t be ignored anymore.

This means that any software application supplier will need to secure their supply chain or bring it all in house. Which may mean that costs for these packages will go up. It’s possible that using a pure open source supply chain may reduce this risk as well. At least that’s the promise of open source.

We said 2020 was an interesting year and it’s going out with a bang.

Matt Leib (@MBLeib), one of our co-hosts, has been blogging in the storage space for over 10 years, with work experience both on the engineering and presales/product marketing.. His blog is at Virtually Tied to My Desktop and he’s on LinkedIN.

Keith Townsend (@CTOAdvisor) is a IT thought leader who has written articles for many industry publications, interviewed many industry heavyweights, worked with Silicon Valley startups, and engineered cloud infrastructure for large government organizations. Keith is the co-founder of The CTO Advisor, blogs at Virtualized Geek, and can be found on LinkedIN.