109: GreyBeards talk SmartNICs & DPUs with Kevin Deierling, Head of Marketing at NVIDIA Networking

We decided to take a short break (of sorts) from storage to talk about something equally important to the enterprise, networking. At (virtual) VMworld a month or so ago, Pat made mention of developing support for SmartNIC-DPUs and even porting vSphere to run on top of a DPU. So we thought it best to go to the source of this technology and talk with Kevin Deierling (TechSeerKD), Head of Marketing at NVIDIA Networking who are the ones supplying these SmartNICs to VMware and others in the industry.

Kevin is always a pleasure to talk with and comes with a wealth of expertise and understanding of the technology underlying data centers today. The GreyBeards found our discussion to be very educational on what a SmartNIC or DPU can do and why VMware and others would be driving to rapidly adopt the technology. Listen to the podcast to learn more.

NVIDIA’s recent acquisition of Mellanox brought them Mellanox’s NIC, switch and router technology. And while Mellanox, and now NVIDIA have some pretty impressive switches and routers, what interested the GreyBeards was their SmartNIC technology.

Essentially, SmartNICS provide acceleration and offload of data handling needs required to move data around an enterprise network. These offload services include at a minimum, encryption/decryption, packet pacing (delivering gadzillion video streams at the right speed to insure proper playback by all), compression, firewalls, NVMeoF/RoCE, TCP/IP, GPU direct storage (GDS) transfers, VLAN micro-segmentation, scaling, and anything else that requires real time processing to perform at line speeds.

For those who haven’t heard of it, GDS transfers data from storage directly into GPU memory and from GPU memory directly to storage without any CPU cycles or server memory involvement, other than to set up the transfer. This extends NVMeoF RDMA tech to/from storage and server memory, to GPUs. That is, GDS offers a RDMA like path between storage and GPU memory. GPU to/from server memory direct interface already exists over the PCIe bus.

But even with all the offloads and accelerators above, they can also offer an additional a secure enclave outside the TPM in the CPU, to better isolate security sensitive functionality for a data center. (See DPU below).

Kevin mentioned multiple times that the new unit of computation is no longer a server but rather is now a data center. When you have public cloud, private cloud and other systems that all serve up virtual CPUs, NICs, GPUs and storage, what’s really being supplied to a user is a virtual data center. Cloud providers can carve up their hardware and serve it to you any way you want or need it. Virtual data centers can provide a multitude of VMs and any infrastructure that customers need to use to run their workloads.

Kevin mentioned by using SmartNics, IT or cloud providers can return 30% of the processor cycles (that were being spent doing networking work on CPUs) back to workloads that run on CPUs. Any data center can effectively obtain 30% more CPU cycles and increased networking speed and performance just by deploying SmartNICs throughout all the servers in their environment.

SmartNICs are an outgrowth of Mellanox technology embedded in their HPC InfiniBAND and high end Ethernet switches/routers. Mellanox had been well known for their support of NVMeoF/RoCE to supply high IOPs/low-latency IO activity for NVMe storage over Ethernet and before that their InfiniBAND RDMA technologies.

As Mellanox came out with their 2nd Gen SmartNIC they began to call their solution a “DPU” (data processing unit), which they see forming part of a “holy trinity” underpinning the new data center which has CPUs, GPUs and now DPUs. But a DPU is more than just a SmartNIC.

All NVIDIA SmartNICs and DPUs are based on Mellanox’s BlueField cards and chip technology. Their DPU uses BlueField2 (gen 2 technology) chips, which has a multi-core ARM engine inside of it and memory which can be used to perform computational processing in addition to the onboard offload/acceleration capabilities.

Besides adding VMware support for SmartNICs, PatG also mentioned that they were porting vSphere (ESX) to run on top of NVIDIA Networking DPUs. This would move the core VMware’s hypervisor functionality from running on CPUs, to running on DPUs. This of course would free up most if not all VMware Hypervisor CPU cycles for use by customer workloads.

During our discussion with Kevin, we talked a lot about the coming of AI-ML-DL workloads, which will require ever more bandwidth, ever lower latencies and ever more compute power. NVIDIA was a significant early enabler of the AI-ML-DL with their CUDA API that allowed a GPU to be used to perform DL network training and inferencing. As such, CUDA became an industry wide phenomenon allowing industry wide GPUs to be used as DL compute engines.

NVIDIA plans to do the same with their SmartNICs and DPUs. NVIDIA Networking is releasing the DOCA (Data center On a Chip Architecture) SDK and API. DOCA provides the API to use the BlueField2 chips and cards which are the central techonology behind their DPU. They have also announced a roadmap to continue enhancing DOCA, as they have done with CUDA, over the foreseeable future, to add more bandwidth, speed and functionality to DPUs.

It turns out the real problem which forced Mellanox and now NVIDIA to create SmartNics was the need to support the extremely low latencies required for NVMeoF and GDS IO.

It wasn’t clear that the public cloud providers were using SmartNICS but Kevin said it’s been sort of a widely known secret that they have been using the tech. The public clouds (AWS, Azure, Alibaba) have been deploying SmartNICS in their environments for some time now. Always on the lookout for any technology that frees up compute resources to be deployed for cloud users, it appears that public cloud providers were early adopters of SmartNICS.

Kevin Deierling, Head of Marketing NVIDIA Networking

Kevin is an entrepreneur, innovator, and technology executive with a proven track record of creating profitable businesses in highly competitive markets.

Kevin has been a founder or senior executive at five startups that have achieved positive outcomes (3 IPOs, 2 acquisitions). Combining both technical and business expertise, he has variously served as the chief officer of technology, architecture, and marketing of these companies where he led the development of strategy and products across a broad range of disciplines including: networking, security, cloud, Big Data, machine learning, virtualization, storage, smart energy, bio-sensors, and DNA sequencing.


Kevin has over 25 patents in the fields of networking, wireless, security, error correction, video compression, smart energy, bio-electronics, and DNA sequencing technologies.

When not driving new technology, he finds time for fly-fishing, cycling, bee keeping, & organic farming.

This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png
This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png


105: Greybeards talk new datacenter architecture with Pradeep Sindhu, CEO & Co-founder, Fungible

Neither Ray nor Keith has met Pradeep before, but Ray was very interested in Fungible’s technology. Turns out Pradeep Sindhu, CEO and Co-founder, Fungible has had a long and varied career in the industry starting at Xerox Parc, then co-founding and becoming chief scientist at Juniper, and now reachitecting the data center with Fungible. Pradeep mentioned this at the end of the podcast, he has always been drawn to hard problems with the potential to open up immense possibilities. What he did at Juniper and what he is planning to accomplish with Fungible both fit that pattern.

Today, in a typical data center, we have servers, networking and storage equipment all connected through a fabric. But from Pradeep’s perspective none of it works well in support of data centric computing. What we have today is operating like changing a screw with a pliers. But if there existed some hardware that can execute data centric computing (or to follow the metaphor, a screw driver) well, the data center would operate much more efficiently, with more performance and better resource use.

Fungible was founded in 2015 with the idea that the industry is moving to a data centric computing paradigm and today’s data center is ill equipped to take IT there.

What is data centric computing

The IT industry has been moving to a new type of computing, that is focused on short bursts of CPU activity with relatively small packets of data coming off the network (from sensors/outside world, from storage, from other servers, etc.). Those workloads are often transient, short lived, are intended to be performed quickly and may not leave any persistent state.

We can see this in the emergence of micro-services architectures with Docker and k8s containers. But you don’t have to be using containers. It’s also present in machine learning where the update cycle of the neural network (with accelerators) takes lot’s of small bursts of computation while it consumes lots of small data items (pictures, text documents, ticker/status logs, etc. ).

Furthermore, the move to commodity hardware has taken the same x86/ARM core CPUs and used them to execute these small bursts of computation. And for some of these operations that may still make sense. But when the data center uses these same cores to perform data path packet processing. It bogs down the network. It consumes a lot of power, adds overhead (higher latencies), leads to packet loss, injects network jitter and a host of other problems.

So, in order to get the data packets to where they need to be with out those problems, networking endpoints need to be changed out to something designed to support data path critical workloads. Pradeep calls these data path critical work items “run to complete” code.

The critical question is what proportion of IT workloads are “data centric’ vs. not. While it might not be that high today, Pradeep and Fungible are betting that it’s going to be getting much higher over time. If we look at hyper-scalars today they are the forefront of this computing paradigm change and much of their workloads are moving to containerized execution.

The DPU enables data centric computing

Fungible plans to add a DPU that supports a power efficient, “run-to-complete” programming engine to the data center. By using DPUs, they can create a true fabric (using IPoE) that’s low latency, low jitter, lossless and provides full cross-sectional bandwidth.

The problem as Pradeep sees it is that the X86 and ARM cores are just not made to execute run-to-comple workloads well and this is required to provide a true fabric. Whereas Fungible has designed the DPU from the start to execute run-to-complete work.

Pradeep sees the data center of tomorrow utilizing JBoF(lash) & JBoD(isk) boxes with DPU(s) in front of them providing storage server services (block, file and object), JBoGP(Us) or JBoFP(GAs) boxes with DPU(s) in front of them providing accelerator/graphics server services, and compute boxes with DPU(s) and x86/ARM cores with DRAM-Optane PMEM in them providing CPU server and client services. All the DPUs together in a cluster would in total provide true fabric services.

Essentially, the DPUs would take over all data path operations and the storage, GPUS, CPUs would handle everything else. In effect, segregating data path and control path services in the data center.

Greenfield, brownfield or both

Keith and I both assumed this would be great for a green field deployments. But,. Pradeep said it’s designed to be incrementally added to servers, JBoFs, JBoDs, JBoGs/JBoFPs and start providing data path services within current data center fabric environments. Even as the rest of the data center remain unchanged.

At some point we talked about the programming model of the DPU. The DPU offers a bring your own Linux OS that can be programmed in any language you choose. But the critical, data-path functionalityi is coded in “C” to run as fast and as efficiently as possible.

Fungible has designed this hardware themselves. We didn’t get to talk about how they plan to market their product to the data center.

Pradeep also said to stay-tuned, and they were just about to announce their first product offering based on the DPU.

The podcast ran ~38 minutes. Pradeep, given his education and experience, is a very knowledgeable individual about the data center environment today. He’s certainly one of the most interesting IT tecnologist we have talked with in a while on the GreyBeards podcast. To say what Fungible is trying to do is aggressive and bold is an understatement. But Pradeep feels this is the only way forward to liberate the data center from its data path chains today. Both Keith and I thought we needed at least another hour or so to truly understand what they are doing and where they are going with it. Listen to the podcast to learn more.

This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png

This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png
This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png

Pradeep Sindhu, CEO and Co-Founder, Fungible

Pradeep Sindhu is CEO and Co-Founder of Fungible, a Santa Clara-based startup providing at-scale, next-generation solutions for the data center, cloud and IT industries. He has been at the forefront of the network and processing industry for over three decades.

As the co-founder and CTO of Juniper Networks, he played a central role in the architecture, design and development of Juniper’s M40 router – the M series was the first of its kind, offering the industry true decoupling of the control plane and the forwarding plane.

Prior to Juniper, he was a Principal Scientist and Distinguished Engineer at the Computer Science Lab at Xerox’s Palo Alto Research Center (PARC) pushing the envelope on what silicon could do for networking and processing.

He is passionate about new ways to support our growing data-centric world with the right combination of hardware and software to build the infrastructure our future needs.

099: GreyBeards talk Folding@Home with Mike Harsch, a longtime enthusiast

Microscopic picture of Coronavirus

Mike Harsch (@harschness) is a personal friend, a computer enthusiast with a particular and enduring interest in distributed systems and GPU computing. MIke’s been a longtime user and proponent of Folding@Home, a distributed system focused on protein dynamics that anyone can download and run on their personal computer(s) or gaming devices.

We started the discussion on the history of distributed processing using home computers. Mike apparently first ran accross these systems in college and was using one in his college dorm room, back in 1997. At the time there was a system called, distributed.net, which was attempting to crack the (RC5-56[bit]) encryption keys used for computer security and offered a $10K prize for solving it. That was solved in 250 days (source: wikipedia article on distributed.net). Distributed.net is still up and working but since then they have moved to ever larger keys.

Next came Seti@Home which was a 2nd gen distributed system. SETI @Home sent out slices of recorded radio telescope spectrum and tasked people’s computers (during screen saving) to analyze that spectrum for alien signals. Seti@Home painted a nice image of the analysis. Seti@Home also used some gamification, where users gained points for analyzing spectrum. Over time they had something like a leader board tracking the top users. Recently, Seti@Home shut down their distributed system and changed their focus to analyze all the results they received from their users. I was a SETI@Home user for a while.

Folding@Home

Folding@Home is 3rd generation distributed computing solution built along the same lines but rather than searching for aliens, with Folding@Home you are running a simulation of what a protein molecule does over time. Mike mentioned that a typical Folding@Home work unit is to simulate a few nanoseconds in the life of a protein and this could take an hour or more on a x86 class multi-core CPU (with less time on GPUs).

Mike mentioned that there was a recent Ask Me Anything (AMA) event on Reddit with the team on Folding@Home answering questions. And on March 15th, the team at Folding@Home clarified how they are helping to solve the COVID-19 pandemic.

Keith has used Folding@Home in the past. And my son was an early user as well.

What Folding@Home does

Fold@Home uses idle CPU or GPU time on home gaming platforms/computers/servers or data center servers. Initially, in October of 2000, it was used to understand protein folding. But nowadays it’s gone beyond just folding, to simulate the life of a protein.

Prior to their turn to concentrate on COVID-19, they usually had ~30K active users, supplying ~100PFlops (100 quintillian x86 double precision floating point operations per second) of compute power. 

You get points for doing Folding@Home work. When Folding@Home was launched it was designed to use a single CPU/single core. Sometime in 2006, they released a SMP version of the code ,which could use multi-cores. Later they released a multi-threaded version which worked better on multi-core CPUs. And within the last few years, they have released a GPU support that could take advantage of the massive numbers of GPU cores available today.

Mike said that Folding@Home work unit GPU is generally 10 to 100X faster than what can be done with multi-core/multi-threaded CPU systems. 

Around Feb 27, Folding@Home announced they were going to focus all their efforts on understanding how to combat the COVID-19 coronavirus. After the announcement, their user count went through the roof, to now ~400K active users/day. This led to throttling requests for work and delays in handling responses. Over the ensuing weeks, (as of 3/18), they seem to have added enough resources to support their current levels of users.

The architecture of the old Folding@Home system was 2 tiered, they had a set of Folding@Home front-end servers that handled web traffic and distributed the work requests/responses to a set of backend servers that supplied work requests to users and combined work results. In their latest rush they seemed to have had to add servers, networking and storage to both tiers.

Sometime around March 25th, Folding@Home became the firsth and only ExaFlop supercomputer, achieving 1.56 (x86) ExaFlops (10**18 FLOPS, source: wikipedia article on Folding@Home) and have over 1 million active computing devices (GPUs & CPUs) in their network (see: Greg Bowwan’s status tweet).

Deploying Folding@Home on your systems

Folding@Home operates on any number of endpoint devices OSs and gaming console -systems. It comes in two software packages, one is the software that logs into the Folding@Home server to gather the next slice of work unit to perform and the other is the one that does the simulation work. They have an option to paint a picture of what is happening but most disable this feature to devote 100% of any idle CPU/GPU resources to the simulation. They also have a support forum, if you have any questions or need assistance in deploying their software.

Keith mentioned that some gal at VMware asked VMware users to devote their home server CPUs/GPUs to the project. I checked their website and they have a vSphere appliance (FLING) that will run Folding@Home and will register itself as joining the VMware team. Mike mentioned that GitHub (announced on Twitter) was going to supply up to 60K CPU core hours a day to the project. They recently reported that they are shifting work units from understanding COVID-19 to screening compounds for therapeutic potential against the coronavirus.

The world needs you to help solve the COVID-19 pandemic. So join up with Folding@Home to do your part. Downloading the software and installing it on a Mac was easy. Just don’t forget to reboot afterwards and then run FAHcontrol and FAHviewer in “Applications/Folding@home” folder to see what’s going on.

The podcast runs a little under 40 minutes. Mike was very knowledgeable about the IT side of Folding@Home, but was less knowledgeable about the biological side of what they are doing.  Listen to the podcast to learn more.

This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png

Mike Harsch, a computer

Mike is a long time computer enthusiast with particular interests in distributed systems and GPU computing.  He lives in CO and has a basement full of (GPUs &) computers.

Mike and I have co-coached a local high school, FTC robotics team for the last 4 years. And Mike has been involved with FTC robotics for much longer than that.

097: GreyBeards talk open source S3 object store with AB Periasamy, CEO MinIO

Ray was at SFD19 a few weeks ago and the last session of the week (usually dead) was with MinIO and they just blew us away (see videos of MinIO’s session here). Ray thought Anand Babu (AB) Periasamy (@ABPeriasamy), CEO MinIO, who was the main presenter at the session, would be a great invite for our GreyBeards podcast. Keith and I had a ball talking with AB.

Why object store

There’s something afoot in object storage space over the last year or so. It seems everybody is looking to deploy object store whether that be on prem, in CoLo facilities and in the cloud. It could be just the mass of data coming online but that trend has remained the same for years no. No it’s something else.

It all starts with AWS and S3. Over the last couple of years AWS has been rolling out new functionality that only works with S3 and this has been driving even more adoption of S3 as well as other object storage solutions.

S3 compatible object stores are available in just about every cloud service, available from major (and minor) storage vendors and in open source from MinIO.

Why S3 is so popular

Because object store is accessed via RestFUL interfaces, traditionally most implementations used their own API to access it. But when AWS created S3 (simple storage service) with their own API/SDK to access it, it somehow became the de-facto standard interface for all other object stores. S3 compatibility became a significant feature that all object stores had to support.

Sometime after that MinIO came into existence. MinIO provides a 100% open source, fully AWS S3 compatible object store that you can run anywhere on prem, in CoLo facilities and indeed in the cloud. In fact, there exist customers that run MinIO in AWS AB says this is probably just customers using a packaged software solution which happens to include MinIO but it’s nonetheless more expensive than AWS S3 as it uses EC2 instances and EBS storage to create an object store

Customers can access MinIO object stores with the AWS S3 SDK or the MinIO SDK. and you can access AWS S3 storage with AWS S3 SDK or use MinIO SDK. Occosionally, AWS S3 updates have broken MinIO’s SDK but these have been later fixed by AWS. It seems AWS and MinIO are on good terms.

AB mentioned that as customers get up to a few PBs of AWS S3 storage they often find the costs to be too high. It’s at this point that they start looking at other object storage solutions. But because MinIO is 100% S3 compatible and it’s open source many of these customers deploy it in their own data center facilities or in colo environments.

For those customers that want it, MinIO also offers an S3 gateway. With the gateway on prem customers can use S3 or standard file services to access S3 object storage located in the cloud. The gateway also works in the public cloud and can support both AWS s3 as well as Microsoft Blob storage as a backend.

MinIO matches AWS S3 features

AWS S3 has a number of great features and MinIO has matched or exceeded them all, step by step. AWS S3 has cross region replication options where customers can replicate S3 data from one region to another. MinIO supports both asynchronous replication of S3 data and synchronous replication (using RADIO).

But MinIO adds support for erasure coding within a fault domain. Default is Nx2 erasure coding which duplicates all your data so as long as 1/2 of your servers and storage are available you continue to have access to all your data. But this can be configured down like 12+4 where data is split accross 16 servers any four of which can fail and you can still access data.

AWS customers can use a Snowball (standalone storage device) to transfer data to or from S3 storage. AWS Snowball implements a subset of S3 API and requires a NAS staging area of equivalent size to migrate data out of S3. MinIO has support for Snowball’s limited S3 API and as such, Snowball’s can be used to migrate data into or out of MinIO. MinIO has a blog post which describes their support for AWS Snowball.

AWS also offers S3 Lambda services or server less computing services where compute services can be invoked when data is loaded in a bucket and then turned off when no longer needed. AWS Lambda depends on AWS messaging and other services to work properly. But MinIO supports Lambda like functionality using other open source services. AB mentions MQTT and Kafka services. MinIO has another blog post discussing their Lambda like services based on Kafka.

AWS recently implemented Snowflake a SQL database server for unstructured data that uses S3 storage to hold data. Ray and Keith almost choked on that statement as unstructured data and databases never used to be uttered in the same breath. But what AWS has shown was that you can use object store for database data as long as you are willing to load the table into memory and process it there and then unload any modified table data back into the object store. Indexing of the object data seems to be done as the data is being loaded and is also being done in a (random IO) cache or in memory and once done can also be unloaded into the object store.

Now Snowflake uses S3 but it’s not available on prem. MinIO has a number of data base partners that make use of their object store as a backend to host a Snowflake like service onprem. AB mentioned Spark and Splunk but there are others as well.

We ended up the discussion with what does it mean to have 20K stars on GitHub. AB said if you did a java script getting 20K stars would be easy but you just don’t see this sort of open source popularity for storage systems. He said the number is interesting but the growth rate is even more interesting.

The podcast runs ~47 minutes. AB was a great to talk tech with. Keith and I could have talked all afternoon with AB. It was very hard to stop the recording as we could have talked with him for another hour or more. AB said he doesn’t like to do podcasts or videos but he had no problem with us firing away questions. Listen to the podcast to learn more.

This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png

Anand Babu Periasamy, CEO MinIO

AB Periasamy is the CEO and co-founder of MinIO. One of the leading thinkers and technologists in the open source software movement, AB was a co-founder and CTO of GlusterFS which was acquired by RedHat in 2011. Following the acquisition, he served in the office of the CTO at RedHat prior to founding MinIO in late 2015. AB is an active angel investor and serves on the board of H2O.ai and the Free Software Foundation of India.

He earned his BE in Computer Science and Engineering from Annamalai University.

096: GreyBeards YE2019 IT Industry Trends podcast

In this, our yearend industry wrap up episode, the GreyBeards discuss trends and technologdies impacting the IT industry in 2019 and what’s ahead for 2020. This year we have Matt and Keith on the podcast along with Ray. Just like last year, we start off with NVMeoF.

NVMeoF unleashed

This year just about every major storage vendor announced new systems that either have support for NVMeoF or currently offer NVMeoF on their storage systems. Most offer FC based NVMeoF but a few offer NVMeoF/Ethernet, fewer still offer both.

All of the NVMeoF/Ethernet seem to be using RoCE or iWARP. Unclear if one is more often used that the other, so for now both continue to be used in the market. Some storage vendors are offering NVMeoF as an internal fabric to access storage while still using iSCSI or FC/SCSI to access the data. This works better than SAS but won’t provide all the performance you can get from end-to-end NVMeoF.

NVMeoF is all about increasing IOPS and reducing response times. That and getting ready for SCM SSDs. In the mean time the SSD industry has introduced some very attractive NVMe (NAND) SSDs that in NVMeoF storage system can increase IOPS and reduce latencies.

We talked last year about NVMeoF standards finally stabilizing and this year the rollout across enterprise storage systems is testament to that.

SCM hits the enterprise

Most of us attended an Intel Data Center Event earlier this past yea,r where Optane DC PM was introduced. Optane DC PM is the memory version of Optane SCM (3DX Crosspoint) technology. Intel offers two distinct modes of accessing Optane DC PM as memory: 1) App Direct mode, where data in Optane DC PM persists across power cycles but requires one to use a special AP; and 2) Memory mode where Optane DC PM is cleared during a power cycle, (see our RayOnStorage post Need memory, Intel’s Optane DC PM…).

Vendors seem to be using Optane both memory and SCM technology differently. Pure is using Optane SSDs plugged into their FlashArray as sort of a read cache for customer IO. They suggest for well behaved applications this can reduce IO response times considerably.

Dell EMC introduced SCM as a storage tier and are using their automated storage tiering to move the hottest data to SCM. Oracle’s latest Exadata appliance uses Optane DC PM as both a read and write caching layer.

It won’t be long before every enterprise vendor offers SCM drives in their storage systems with a few offering Optane DC PM as in memory caching technology.

Of course, the big news for Optane DC PM is its use in memory databases, specifically SAP HANA. HANA can take advantage of the (6) TB of memory to to handle larger databases. Keith mentioned that even Microsoft SQL server can take advantage of the additional memory to provide faster responses to queries.

Keith also mentioned that there are some systems out there that can be configured to share Optane memory (or storage). When SAP or other databases use this solution they are able to amortize the cost of the technology over more use cases.

Of course, Optane DC PM are only available on the lastest generation Intel processors. None of us have heard anything from AMD (or Micron) on providing a second source for support of Optane DC PM (or the memory technology itself). Presumably most customers would want a second source for Optane DC PM processor support (as well as the technology)

Cloud enterprise storage hits mainstream

The other thing we saw more of this year is enterprise vendors offering versions of storage in public cloud environments. NetApp was an early proponent of doing this.

We saw at Pure that they have a new Cloud Block Store witch is a re-architected version of FlashArray//X storage using AWS hardware and networking services. We were very impressed with what they have accomplished and it was the subject of more than one late night discussion. Listen to the Keith & Ray show at Pure//Accelerate2019 podcast to learn more.

Matt mentioned Nimble’s cloud volume storage which is cloud adjacent. Most enterprise vendors offer something similar today. They differentiate on how easy it is to configure, use and where (which regions) it’s available in.

NetApp has arguably been at this the longest and has the deepest offerings available from cloud adjacent file and block storage, to offering native enterprise file services for all public cloud environments, to supplying a suite of dedicated data services to surround all of their storage technology operating in public clouds and on premises.

While Dell EMC may have missed the turn to the cloud, they are quickly trying to catch up. Keith mentioned Faction, a Dell partner that offers cloud storage services using VMware with VMC. With Faction and vSAN customers have access to software defined storage that uses cloud hardware to support data services.

What’s driving data growth

There seems to be no end for the need for storage to store data. The GreyBeards point to three trends driving data growth today.

  1. IoT seems to have no bounds. A recent RayOnStorage post Internet of Tires discussed how tire companies were tying their tires to the internet. And that’s just the start, pretty soon every artifact, every device, every manufactured item will have a number of sensors attached all of which will be creating massive amounts of data.
  2. AI ML DL has an insatiable appetite for data. IoT is being used largely to optimize products and services. But it’s DL, with a large dollop of data, that is behind much of that optmization.
  3. SaaS applications is a relatively new application approach that’s being rolled out to more arenas and as it’s online and user oriented, seems to generate lots of data.

Containers storage debate

We closed the podcast with a heavy debate on whether container applications have need for storage. Keith was adamant that containers by their very nature are stateless and that Kubernetes ability to stop and start container applications at will almost requires stateless operations.

Ray was a bit more theoretical on the topic and believed that most container applications today take advantage of some sort of database or other services to store state and that state is just another word for storage.

Keith mentioned encoding as a typical container app. Encoding containers can be fired up and taken down at will without hurting anything but throughput. Yes, but those encoder container apps must access some database or other state information to find out what work is left to do and as they complete their work they update this data as well as store their newly encoded segments. This all involves the use of state information.

In the end, I think we were talking about the same thing but using different terminology. Keith believes that persistent state information is needed and Ray says that this is just another word for (containers) storage. Matt said we probably need Nigel (@NigelPoulton) on the podcast to straighten us both out.

The podcast ran a bit long and could have run longer. Keith and Matt bring systems level perspective to what’s happening in the storage market. But they come at it from different sides. Ray seems to frame everything from a storage perspective. Diverse perspectives lead to a more fuller and interesting discussion. Listen to the podcast to learn more.


This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png
This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png

Ray Lucchesi ( @RayLucchesi) is the host of GreyBeardsOnStorage and is President/Founder of Silverton Consulting, and a prominent blogger at RayOnStorage.com.

Keith Townsend (@CTOAdvisor) is a IT thought leader who has written articles for many industry publications, interviewed many industry heavyweights, worked with Silicon Valley startups, and engineered cloud infrastructure for large government organizations. Keith is the co-founder of The CTO Advisor, blogs at Virtualized Geek

Matt Leib (@MBLeib), one of our co-hosts, has been blogging in the storage space for over 10 years, with work experience both on the engineering and presales/product marketing. His blog is at Virtually Tied to My Desktop.