095: GreyBeards talk file sync&share with S. Azam Ali, VP Customer Success at CentreStack

We haven’t talked with a file synch and share vendor in a while now and Matt was interested in the technology. He had been talking with CentreStack, and found that they had been making some inroads in the enterprise. So we contacted S. Azam Ali, VP of Customer Success at CentreStack and asked if he wanted to talk about their product on our podcast.

File synch and share, is part collaboration tool, part productivity tool. With file synch & share many users share the same files, across many different environments and end point devices. It’s especially popular with road warriors that need access to the same files on the road that reside in corporate data centers. With this technology, files updated anywhere would be available to all.

Most file synch&share systems require you to use their storage. But CentreStack just provides synch and share access to NFS and SMB storage that’s already in the data center.

CentreStack doesn’t use VPNs to access data, many other vendor do. But with CentreStack, one just log’s into a website (with AD credentials) and they have immediate browser access to files.

CentreStack uses a gateway VM, that runs in the corporate data center, configured to share files/file directories/shares. We asked whether they were in the data path and Azam said no. However, the gateway does register for file system notifications (e.g. when files are updated, outside CentreStack, they get notified).

CentreStack does maintain meta-data on the files, directories, shares that are under it’s control. Presumably, once an admin sets it up, it goes out and access the file systems that have shared files and populates their meta-data for those files.

CentreStack works with any NFS and SMB file system as well as NAS servers that support these two. It’s unclear whether customers can have more than one gateway server in their data center supporting synch and share but Azam did say that it wasn’t unusual for customers with multi-data centers to have a gateway in each, to support synch&share requirements for each data center.

They use client software on end point devices, which presents the shared files as an external drive (to Mac), presumably a cloud drive for Windows PCs and similar services (in an App) for other systems (IOS, Android phones, iPad, etc.). We believe Azam said Linux was coming soon.

The client software can be configured in cache mode or offline mode:

  • Cache mode – the admin can configure how much space to use on the endpoint device and the software will cache the most recently used files in that space for faster access
  • Offline mode – the software moves all files that the endpoint login can access, to the device.

In cache mode, when users open a file (not in the most recently used cache), there will be some delay as the system retrieves data from the internet and copies it to the endpoint device. Unclear what the delay might be but it’s probably a function of internet speed and load on the gateway, with possibly some overhead for the NFS/SMB/NAS system to supply the data. If there’s not enough space to hold the file, the oldest non-open file is erased from the cache.

In both modes, Centrestack supports cross domain locking. That is, if one client has a file open (for update), all other systems/endpoints may only access the file in read-only mode. After the file is closed. the file can then be opened for update by other users.

When CentreStack clients are used to update files, the data is stored back in the original file systems with versioning. This way if the data is corrupted, admins can easily return back to a known good copy version.

CentreStack also offers a cloud backup and DR service. Gateway admins can request that synch&share files be backed up to cloud storage (AWS S3, Azure Blob and Wasabi). When CentreStack backups file data to the cloud, it also includes metadata information about the files so they can be re-constituted anywhere.

A CentreStack cloud gateway VM can be activated in the cloud to supply access to backed up files. Unclear whether the CentreStack cloud backup has to be restored to block or file storage first or if it just accesses the data on cloud storage directly. But one customers using CentreStack cloud DR would need to run client software in their applications accessing these files.

Wasabi seemed an odd solution to have on their list of supported cloud storage providers, but Azam said for their market, the economics of Wasabi storage were hard to ignore. See our previous podcast with David Friend, Co-Founder& CEO, Wasabi, to learn more about Wasabi.

CentreStack is licensed on a per user basis, not storage capacity bucking industry trends. But they don’t actually own the storage so it makes sense. For CentreStack cloud backup, customers also have to supply the cloud storage.

They also offer a 30 day free trial on their website with unlimited users. We assume this uses CentreStacks cloud gateway and customers bring their own cloud storage to support it.

The podcast runs about 35 minutes. Azam was a bit more marketing than we are used to, but he warmed up once we started asking questions. Listen to the podcast to learn more.

This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png

S. Azam Ali, VP of Customer Success, CentreStack

S. Azam Ali, is VP of Customer Success at CentreStack and is an executive with extensive experience in managing global teams including sales, support and consulting services.

Azam’s channel experience includes on-boarding new partners including creation of marketing and training collateral for the partners. Azam is an executive with a passion for customer success and establishing long term relationships and partnerships.

Azam is also an advisor to startups as well as established technology companies.

094: GreyBeards talk shedding light on data with Scott Baker, Dir. Content & Data Intelligence at Hitachi Vantara

Sponsored By:

At Hitachi NEXT 2019 Conference, last month, there was a lot of talk about new data services from Hitachi. Keith and I thought it would be a good time to sit down and talk with Scott Baker (@Kraken-Scuba), Director of Content and Data Intelligence, at Hitachi Vantara about what’s going on with data operations these days and how customers are shedding more light on their data.

Information supply chain

Something Scott said in his opening remarks caught my attention when he mentioned customer information supply chains. The information supply chain is similar to manufacturing supply chains, but it’s all about data. Just like manufacturing supply chains where parts and services come from anywhere and are used to create products/services for customers,

information supply chains are about the data used in their organization operations. Information supply chain data is A) being sourced from many places (or applications); B) being added to by supply chain processing (or other applications); and C) ultimately used by the organization to supply a product/service to customers.

But after the product/service is supplied the similarity between manufacturing and information supply chains breaks down. With the information supply chain, data is effectively indestructible, is infinitely re-useable and can live forever. Who throws data away anymore?

The problem most organizations have with information supply chains is once the product/service is supplied, data is often put away never to be seen again or as Scott puts it, goes dark.

This is where Hitachi Content intelligence (HCI) comes in. HCI is designed to take (unstructured or structured) data and analyze it (using natural language and other processing tools) to surround it with information and other metadata, so that it can become more visible and useful to the organization for the life of its existence.

Customers can also use HCI to extract and blend data streams together, automating the creation of an information rich, data repository. The data repository can readily be searched to re-discover or uncover attributes about the data not visible before.

Scott also mentioned the Hitachi Pentaho Platform which can be used to make real time decision from structured data. Pentaho information can also be fed into HCI to provide more intelligence for your structured data.

But HCI can also be used to analyze other database data as well. For instance, database blob and text elements can be fed to and analyzed by HCI. HCI analysis can include natural language processing and other functionality to tag the data by adding key:value information, all of which can be supplied back to the database or Pentaho to add further value to structured data.

Customers can also use HCI to read and transform database tables into XML files. XML files can be stored in object stores as objects or in file systems. XML data could easily be textually indexed and be searched by various tools to better understand the structured data information

We also talked about Hadoop data that can be offloaded to Hitachi Content Platform (HCP) object storage with a stub left behind. Once data is in HCP, HCI can be triggered to index and add more metadata, which can then later be used to decide when to move data back to Hadoop for further analysis.

Finally, Keith mentioned that he just got back from KubeCon and there was an increasing cry for data being used with containerized applications. Scott mentioned HCP for Cloud Scale, the newest member of the HCP object store family, focused on scale out capabilities to provide highly consistent, object storage performance for customers that need it. Customers running containerized workloads use scale-out capabilities to respond to user demand and now they have on premises object storage that can scale with them, as needs change.

The podcast ran ~24 minutes. Scott was very knowledgeable about data workflows, pipelines and the need for better discovery tools. We had a great time discussing information supply chains and how Hitachi can help customers optimize their data pipelines. Listen to the podcast to learn more.

This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png

Scott Baker, Director of Content and Data Intelligence at Hitachi Vantara

Scott Baker is, and has been, an active member of the information technology, data analytics, data management, and data protection disciplines for longer than he is willing to admit.

In his present role at Hitachi, Scott is the Senior Director of the Content and Data Intelligence organization focused on Hitachi’s Digital Transformation, Data Management, Data Governance, Data Mobility, Data Protection and Data Analytics solutions which includes Hitachi Content Platform (HCP), HCP Anywhere, HCP Gateway, Hitachi Content Intelligence, and Hitachi Data Protection Solutions.

Scott is a VMware Certified Professional, recognized as a subject matter expert, industry speaker, and author. Scott has been a panelist on topics related to storage, cloud, information governance, data security, infrastructure standardization, and social media topics. His educational background includes an MBA, Master’s & Bachelor’s in Computer Science.

When he’s not working, Scott is an avid scuba diver, underwater photographer, and PADI Scuba Instructor. He has a passion for public speaking, whiteboarding, teaching, and traveling the world.

92: Ray talks AI with Mike McNamara, Sr. Manager, AI Solution Mkt., NetApp

Sponsored By: NetApp

NetApp’s been working in the AI DL (deep learning) space for a long time now and announced their partnership with NVIDIA DGX systems, back in August of 2018. At NetApp Insight, this week they were showing off their new NVIDIA DGX systems reference architectures. These architectures use NetApp AFF A800 storage (for more info on AI DL, checkout Ray’s Learning Machine (deep) Learning posts – part 1, – part 2 and – part3).

Besides the ONTAP AI systems, NetApp also offers

  • FlexPod AI solution based on their partnership with Cisco using UCS C480 ML M5 rack servers which include 8 NVIDA Tesla V100 GPUs and also features NetApp AFF A800 storage for use in core AI DL.
  • NetApp HCI has two configurations with 2- or 3-NVIDIA GPUs that come in 1U or 2U rack servers and run VMware vSphere or RedHad OpenStack/OpenShift software hypervisors suitable for edge or core AI DL.
  • E-series reference architecture that uses the BeeGFS parallel file system and offers InfiniBAND data access for HPC or core AI DL.

On the conference floor, NetApp showed AI DL demos for automotive, financial services, Public Sector and healthcare verticals. They also had a facial recognition application running that could estimate your age and emotional state (I didn’t try it, but Mike said they were hedging the model so it predicted a lower age).

Mike said one healthcare solution was focused on radiological image scans, to identify pathologies from x-Ray, MRI, or CAT scan images. Mike mentioned there was a lot of radiological technologists burn-out due to the volume of work caused by the medical imaging explosion over the last decade or so. Mike said image analysis is something that h AI DL can perform very effectively and doing so would improve the accuracy and reduce the volume of work being done by technologists.

He also mentioned another healthcare application that uses an AI DL app to count TB cells in blood samples and estimate the extent of TB infections. Historically, this has been time consuming, error prone and hard to do in the field. The app uses a microscope with a smart phone and can be deployed and run anywhere in the world.

Mike mentioned a genomics AI DL application that examined DNA sequences and tried to determine its functionality. He also mentioned a retail AI DL facial recognition application that would help women “see” what they would look like with different makeup on.

There was a lot of discussion on NetApp Cloud services at the show, such as Cloud Volume Services and Azure NetApp File (ANF). Both of these could easily be used to implement an AI DL application or be part of an edge to core to cloud data flow for an AI DL application deployment using NetApp Data Fabric.

NetApp also announced a new, all flash StorageGRID appliance that was targeted at heavy IO intensive uses of object store like AI DL model training and data analytics.

Finally, Mike mentioned NetApp’s ecosystem of partners working in the AI space to help customers deploy AI DL algorithms in their industries. Some of these include:

  1. Flexential, Try and Buy AI so that customers could bring them in to supply AI DL expertise to generate an AI DL application using customer data and deploy it on customer cloud or on prem infrastructure .
  2. Core Scientific, AI-as-a-Service, so that customers could purchase a service to implement an AI DL application using customer data and running on Core Scientific infrastructure..
  3. Scale Matrix, Mobile data center AI, so that customers could create an AI DL application and run it on Scale Matrix infrastructure that was transported to wherever the customer wanted it to be run.

We recorded the podcast on the show floor, in a glass booth, so there’s some background noise (sorry about that, but can’t be helped). The podcast is ~27 minutes. Mike is a long time friend and NetApp product expert, recently working in AI DL solutions at NetApp. When I saw Mike at Insight, I just had to ask him about what NetApp’s been doing in the AI DL space. Listen to the podcast to learn more.

This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png

Mike McNamara, Senior Manager AI Solution Marketing, NetApp

With over 25 years of data management product and solution marketing experience, Mike’s background includes roles of increasing responsibility at NetApp (10+ years), Adaptec, EMC and Digital Equipment Corporation. 

In addition to his past role as marketing chairperson for the Fibre Channel Industry Association, he was a member of the Ethernet Technology Summit Conference Advisory Board, a member of the Ethernet Alliance, and a regular contributor to industry journals, and a frequent speaker at events.

85: GreyBeards talk NVMe NAS with Howard Marks, Technologist Extraordinary and Plenipotentiary, VAST Data Inc.

As most of you know, Howard Marks was a founding co-Host of the GreyBeards-On- Storage podcast and has since joined with VAST Data, an NVMe file and object storage vendor headquartered in NY with R&D out of Israel. We first met with VAST at StorageFieldDay18 (SFD18, video presentation). Howard announced his employment at that event. VAST was a bit circumspect at their SFD18 session but Howard seems to be more talkative, so on the podcast we learn a lot more about their solution.

VAST Data is essentially an NFS-S3 object store, scale out solution with both stateless, VAST Data storage servers and JBoF drive enclosures with Optane and NVMe QLC SSDs. Storage servers or JBoFs can be scaled independently. They don’t support tiering or DRAM caching of data but instead seem to use the Optane SSDs as a write buffer for the QLC SSDs.

At the SFD18 event their spokesperson said that they were going to kill off disk storage media. (Ed’s note: Disk shipments fell 18% y/y in 1Q 2019, with enterprise disk shipments at 11.5M units, desktop at 24.5M units and laptops at 37M units).

The hardware

The VAST Data storage servers are in a 2U/4 server configuration, that runs interface protocols (NFS & S3), data reduction (see below), data reformating/buffering etc. They are stateless servers with all the metadata and other control state maintained on JBoF Optane drives.

Each drive enclosure JBoF has 12 Optane SSDs and 44 U.2 QLC (no DRAM/no super cap) SSDs. This means there are no write buffers on the QLC SSDs that can lose data when power failures occur. The interface to the JBoF is NVMeoF, either RDMA-RoCE Ethernet or InfiniBand (customer selected). Their JBoFs have high availability, with dual fabric modules that support 2-100Gbps Ethernet/InfiniBand ports per module, 4 per JBoF.

Minimum starting capacity is 500TB and they claim support up to Exabytes. Although how much has actually been tested is an open question. They also support billions of objects/files.

Guaranteed better data reduction

They have a rather unique, multi-level, data reduction scheme. At the start, data is chunked in variable length chunks. They use heuristics to determine the chunk size that fits best. (Ed note, unclear which is first in this sequence below so presented in (our view of) logical order)

  • 1st level computes a similarity hash (56 bit not SHA1), which is used to determine a similarity level with any other currently stored data chunk in the system.
  • 2nd level uses a ZSTD compression algorithm. If a similarity is found, the new data chunk is compressed with the ZSTD compression algorithm and a reference dictionary used by the earlier, similar data chunk. If no existing chunk is similar to this one, the algorithm identifies a semi-unique reference dictionary that optimizes the compression of this data chunk. This semi-unique dictionary is stored as metadata.
  • 3rd level, If it turns out to be a complete duplicate data chunk, then the dedupe count for the original data chunk is incremented, a pointer is saved to the original unique data and the data discarded. If not a complete duplicate of other data, the system computes a delta from the closest “similar’ block and stores just the delta bytes, includes a pointer to the original similar block and increments a delta block counter.

So data is chunked, compressed with a optimized dictionary, be delta-diffed or deduped. All data reduction is done post data write (after the client is ACKed), and presumably, re-hydrated after being read from SSD media. VAST Data guarantees better data reduction for your stored data than any other storage solution.

New data protection

They also supply a unique Locally Decodable Erasure Coding with 4 parity (-like) blocks and anywhere from 36 (single enclosure leaving 4 spare u.2 SSDs) to 150 data blocks per stripe all of which support up to 4 device failures per stripe. 

The locally decodable erasure coding scheme allows for rebuilds without having to read all remaining data blocks in a stripe. In this scheme, once you read the 4 parity (-like) blocks, one has all the information calculated from up to ¾ of the remaining drives in the stripe, so the system only has to read the remaining ¼ drives in the stripe to reconstruct one, two, three, or four failing drives.  Given their data stripe width, this cuts down on the amount of data needing to be read considerably. Still with 150 data drives in a stripe, the system still has to read 38 drives worth of QLC SSD data to rebuild a data drive.

In addition to all the above, VAST Data also reblocks the data into much larger segments, (it writes 1MB segments to the QLC drives) and uses a heat map along with other heuristics to separate actively written data from less actively written data, thus reducing garbage collection, write amplification.

The podcast is a long and runs over ~43 minutes. Howard has always been great to talk with and if anything, now being a vendor, has intensified this tendency. Listen to the podcast to learn more.

Howard Marks, Technologist Extraordinary and Plenipotentiary, VAST Data, Inc.

Howard Marks brings over forty years of experience as a technology architect for hire and Industry observer to his role as VAST Data’s Technologist Extraordinary and Plienopotentary. In this role, Howard demystifies VAST’s technologies for customers and customer requirements for VAST’s engineers.

Before joining VAST, Howard ran DeepStorage an industry test lab and analyst firm. An award-winning speaker, he has appeared at events on three continents including Comdex, Interop and VMworld.

Howard is the author of several books (all gratefully out of print) and hundreds of articles since Bill Machrone taught him journalism at PC Magazine in the 1980s.

Listeners may also remember that Howard was a founding co-Host of the Greybeards-on-Storage Podcast.


64: GreyBeards discuss cloud data protection with Chris Wahl, Chief Technologist, Rubrik

Sponsored by:

In this episode we talk with Chris Wahl, Chief Technologist, Rubrik. This is our second time having Chris on our show. The last time was about three years ago (see our Chris on agentless backup podcast). Talking with Chris again was great and there’s been plenty of news since we last spoke with him.

Rubrik now has three products the Rubrik Cloud Data Protection suite (onprem, virtual or in the [AWS & Azure] cloud), the Rubrik Datos IO (recent acquisition) for NoSql database with semantic dedupe and Rubrik Polaris GPS, a SaaS monitoring/trending/management solution for your data protection environment. Polaris GPS monitors and watches data protection trends for you, to insure all your data protection SLAs are being met. But we didn’t spend much time on Polaris.

Datos IO was designed from the start to backup new databases based on NoSQL technologies and provides, a semantic based deduplication capability, that’s unique in the industry . We talked with Datos IO before their acquisition by Rubrik (see our podcast with Tarun on 3rd generation data protection).

Cloud Data Protection

As for their Cloud Data Protection suite, one major differentiator is that all their functionality is available via RESTful APIs. Their GUI is completely built off their APIs. This means any customer could use their set of APIs to integrate Rubrik data protection with any application/workload on the planet.

Chris mentioned that Rubrik has 40+ specific application/system integrations that provide “strictly consistent” data protection. We assume this means application consistent backups and recovery but goes beyond mere applications.

With the Cloud Data Protection solution, data resides on the appliance for only a short (customer specifiable) period and then is migrated off to cloud or onprem object storage. The object storage could be any onprem S3 compatible storage, in the AWS or Azure cloud. It’s completely automatic. The data migrated to object storage is self-defining, meaning that metadata and data are all available in one spot and can be restored anywhere there’s a Rubrik Cloud Data Protection suite operating.

The Cloud Data Protection appliance also supports onboard search and analytics to search backup/recovery metadata/catalogs. As such, there’s no need to purchase other tools to uncover which backup files exist. Their solution also uses data deduplication to reduce the data stored.

Data stored is also encrypted by customer keys and use HTTPS to transfer data. So, data is secured at rest, secured in flight and deduped. Cloud Data Protection also offers data mobility. That is it can move your VMs and data from onprem to the cloud and use Rubrik in the cloud to rehydrade the data and translate your VMs to run in AWS or Azure and it works in reverse, translating AWS/Azure compute instances into VMs.

Rubrik’s major differentiator is simplicity. Traditionally, customers had been conditioned to thinking data protection took hours to maintain, fix and keep running. But with Rubrik Cloud Data Protection, a customer just points it to an application and selects an SLA, and Rubrik takes over from there.

The secret behind Rubrik’s simplicity is Cerebro. Cerebro is where they have put all the smarts to understand a data center’s infrastructure, applications/VMs, protected data and requested SLAs and just makes it work

The podcast runs ~27 minutes. Chris was great to talk with again and given how long it’s been since we last talked, he had much to discuss. Rubrik seems like an easy solution to adopt and if their growth is any indicator, customers agree. Listen to the podcast to learn more.

Chris Wahl, Chief Technologist, Rubrik

Chris Wahl, author of the award winning Wahl Network blog and host of the Datanauts Podcast, focuses on creating content that revolves around virtualization, automation, infrastructure, and evangelizing products and services that benefit the technology community.

In addition to co-authoring “Networking for VMware Administrators” for VMware Press, he has published hundreds of articles and was voted the “Favorite Independent Blogger” by vSphere-Land three years in a row (2013 – 2015). Chris also travels globally to speak at industry events, provide subject matter expertise, and offer perspectives to startups and investors as a technical adviser.