110: GreyBeards talk FMS2020 wrap up with Jim Handy, General Director of Objective Analysis

This months it’s back to storage and our annual wrap-up on the Flash Memory Summit Conference with Jim Handy, General Director of Objective Analysis. Jim’s been on our show 5 times before and is a well known expert on NAND and SSDs (as well as DRAM and memory systems). Jim also blogs at TheSSDGuy.com and TheMemoryGuy.com just in case you want to learn more.

FMS went virtual this year and had many interesting topics including how computational storage is making headway in the cloud, 3D QLC is hitting the enterprise with PLC on the way, and for a first at FMS, a talk on DNA storage (for more information on this, see our podcast with CatalogDNA). Jim’s always interesting to talk with to help us understand where the NAND-SSD industry is headed. Listen to the podcast to learn more.

Jim mentioned that the major NAND vendors are all increasing the number of layers for their 3D NAND, and it continues to scale well. Most vendors are currently shipping ~100 layer NAND, with Micron doing more than that. And vendor roadmaps are looking at the possibility of 200 layers or more. Jim doesn’t think anyone knows how high it can go.

Another advantage of 3D NAND is it can be used to make bigger bit cells and thus have better endurance. From Jim’s perspective more electrons per cell means a better more resilient bit cell.

Many vendors in the nascent persistent memory industry were all hoping that NAND would stop scaling at some point and they would be able to pick up the slack. But NAND manufacturers found 3D and scaling hasn’t stopped at all. This has relegated most persistent memory vendors to a small niche market with the exception of Intel (and Micron).

Jim said that Intel is losing money on Optane every year, ~$5B so far. But Intel knows that chip profitability is tied to economies of scale, volumes matter. With enough volume, Optane will become cheap enough to manufacture that they will make buckets of money from it.

Interestingly, Jim said that DRAM scaling is slowing down. That means there may be an even bigger market for something close to DRAM access speeds, but with increased density and lower cost. Optane seems to fit that description very well.

Jim also mentioned that computational storage is starting to see some traction with public cloud vendors. Computational storage adds generic compute power to inside an SSD which can be used to perform storage intensive functions out at the SSD rather than transferring data into the CPU for processing. This makes sense where a lot of data would need to be transferred back and forth to an SSD and where computational cycles are just as cheap out on the SSD as in the server. For example, for data compression, search, and video transcoding, computational storage can make a lot of sense. (See our podcast with NGD systems for more informaiton).

In contrast, Open-Channel SSDs are making dumb SSDs, or SSDs without any flash translation layer or other smarts needed to make NAND work as persistent storage bin the enterprise. There’s a small group of system providers that want to perform all this functionality at a global scale (or across multiple SSDs) rather than at the local, SSD drive level.

Another topic that hit it’s stride this year at FMS2020 was Zoned Name Spaces (ZNS). ZNS partitions an SSD into separately addressable segments, to allow higher performing sequential (write) access within those zones. As SSD capacity has increased, IO activity has sky-rocketed and this has led to an “IO blender” effect. Within an IO blender, it’s impossible to understand which IO is following a sequential pattern and which is not. ZNS is intended to solve that probplem

With ZNS SSDs, IOs doing sequential access can have their own partition and that way the SSD can understand its sequential IO and act accordingly. It turns out that sequential writes to NAND can perform much, much faster than random writes.

ZNS was invented for SMR (shingled magnetic recording) disks, because these overwrote portions of other tracks (like roof shingles, tracks on SMR disks overlap). We had heard about ZNS at FMS2019 but had thought this just a better way to share access to a single SSD, by carving it up into logical (mini-)volumes. Jim said that was also a benefit but the major advantage is being able to understand sequential IO and write to the SSD more effectively.

We talked some on the economics of NAND flash, disk and tape as storage media. Jim and I see this continuing a trend that’s been going on for years, where NAND storage cost $/GB ~10X more than disk capacity, and disk storage costs $/GB ~10X more than tape capacity. All three technologies continue their relentless pursuit of increasing capacity but it’s almost like train tracks, all three $/GB curves following one another into the future.

On the other hand, high RPM disk seems to have died, and been replaced with SSDs. Disk manufacturers have seen unit declines but the # GB they are shipping continues to increase. Contrary to a number of AFA system providers, disk is not dead and is unlikely to die anytime soon.

Finally, we discussed DNA storage and it’s coming entry into the storage market. It’s all a question of price of the drive and media technology, size of the mechanism (drive?) and read and write access times. At the moment all these are coming down but are not yet competitive with tape. But given DNA technology trends, there doesn’t appear to be any physical barrier that’s going to stop it from becoming yet another storage technology in the enterprise, most likely at a 10X $/GB cost advantage over tape…

Jim Handy, General Director, Objective Analysis

Jim Handy of Objective Analysis has over 35 years in the electronics industry including 20 years as a leading semiconductor and SSD industry analyst. Early in his career he held marketing and design positions at leading semiconductor suppliers including Intel, National Semiconductor, and Infineon.

A frequent presenter at trade shows, Mr. Handy is known for his technical depth, accurate forecasts, widespread industry presence and volume of publication.

He has written hundreds of market reports, articles for trade journals, and white papers, and is frequently interviewed and quoted in the electronics trade press and other media. 

He posts blogs at www.TheMemoryGuy.com, and www.TheSSDguy.com

106: Greybeards talk Intel’s new HPC file system with Kelsey Prantis, Senior Software Eng. Manager, Intel

We had talked with Intel at Storage Field Day 20 (SFD20), about a month ago. At the virtual event, Intel’s focus was on their Optane PMEM (persistent memory) technology. Kelsey Prantis (@kelseyprantis), Senior Software Engineering Manager, Intel was on the show and gave an introduction into Intel’s DAOS (Distributed Architecture Object Storage, DAOS.io) a new HPC (high performance computing, super computers) file system they developed from scratch to use leading edge, Intel technologies, and Optane PMEM was one of them.

Kelsey has worked on LUSTRE and other HPC file systems for a long time now and came into the company from the acquisition of Whamcloud. Currently, she manages the development team working on DAOS. DAOS is a new HPC object storage file system which is completely open source (available on GitHub).

DAOS was designed from the start to take advantage of NVMe SSDs and Optane PMEM. With PMEM, current servers can support up to 20TB of memory. Besides the large memory sizes, Optane PMEM also offers non-volatile memory and byte addressability (just like DRAM). These two characteristics opens up new functionality that allows DAOS to move beyond legacy, block oriented, storage architectures that have been the only storage solution for HPC (and the enterprise) for decades now.

What’s different about DAOS

DAOS uses PMEM for all metadata and for storing small files. HPC IO has always focused on heavy bandwidth (IO using large blocks) oriented but lately newer applications have emerged, such as AI/ML/DL, data analytics and others, that use smaller files/blocks. Indeed, most new HPC clusters and supercomputers are deploying almost as many GPUs as CPUs in their configurations to support AI activities.

The problem is that these newer applications typically consume much smaller files. Matt mentioned one HPC client he worked with was processing small batches of seismic data, to predict, in real time, earthquakes that were happening around the world.

By using PMEM for metadata and small files, DAOS can be much more responsive to file requests (open, close, delete, status) as well as provide higher performing IO for small files. All this leads to a much better performing system for the new HPC workloads as well as great sustainable performance for the more traditional large file workloads.

DAOS storage

DAOS provides a cluster storage system that can be configured with from 1 (no data protection), but more normally 3 nodes (with data protection) at a minimum to 512 nodes (lab tested). Data protection in DAOS is currently based on mirroring data and can use from 0 to the number of nodes in a cluster as data mirrors.

DAOS system nodes are homogeneous. That is they all come with the same amount of PMEM and NVMe SSDs. Note, DAOS doesn’t support disk drives. Kelsey mentioned DAOS node hardware can be tailored to suit any particular application environment. But they typically require an average of 6% of overall DAOS system capacity in PMEM for metadata and small file activity.

DAOS current supports their own API, POSIX, HDFS5, MPIIO and Apache Spark storage protocols. Kelsey mentioned that standard POSIX uses a pessimistic conflict resolution mode which leads to performance bottlenecks during parallel access. In contrast, DAOS’s versos of POSIX uses optimistic conflict resolution, which means DAOS starts writes assuming there’s no conflict, but if one occurs it handles the conflict in real time. Of course with all the metadata byte addressable and in PMEM this doesn’t take up a lot of (IO) time.

As mentioned earlier, DAOS data protection uses mirror-replicas. However, unlike most other major file systems, DAOS mirroring can be done at the object level. DAOS internally is an object store. Data organization on DAOS starts at the pool level, underneath that is data containers, and then under that are objects. Any object in DAOS can have its own mirroring configuration. DAOS is working towards supporting Erasure Coding as another form of data protection for a future release.

DAOS performance

There’s a new storage benchmark that was developed specifically for HPC, called the IO500. The IO500 benchmark simulates a number of different HPC workloads, measures performance for each of them, and computes an (aggregate) performance score to rank HPC storage systems.

IO500 ranks system performance using two lists: one is for any sized configuration that typically range from 50 to 1000s of nodes and their other list limits the configuration to 10 nodes. The first performance ranking can sometimes be gamed by throwing more hardware into a cluster. The 10 node rankings are much harder to game this way and from our perspective, show a fairer comparison of system performance.

As presented (virtually) at ISC 2020, DAOS took the top spot on the IO500 any size configuration list and performed better than 2X the next best solution. And on the IO500 10 node list, Intel’s DAOS configuration, Texas Advanced Computing (TAC) DAOS configuration, and Argonne Nat Labs DAOS configuration took the top 3 spots and had 3X better performance than the next best, non-DAOS storage system.

The Argonne National Labs has already stated that they will be using DAOS in their new HPC system to be deployed in the near future. Early specifications for storage at the new Argonne Lab required support for 230PB of data and 25TB/sec of bandwidth.

The podcast ran ~43 minutes. Kelsey was great to talk with and very knowledgeable about HPC systems and HPC IO in particular. Matt has worked at Argonne in the past so understood these systems better than I. Sadly, we lost Matt’s end of the conversation about 1/2 way into the recording. Both Matt and I thought that DAOS represents the birth of a new generation of HPC storage. Listen to the podcast to learn more.


This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png

This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png
This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png

Kelsey Prantis, Senior Software Engineering Manager, Intel

 Kelsey Prantis heads the Extreme Storage Architecture and Development division at Intel Corporation. She leads the development of Distributed Asynchronous Object Storage (DAOS), an open-source, low-latency and high IOPS object store designed from the ground up for massively distributed Non-Volatile Memory (NVM).

She joined Intel in 2012 with the acquisition of Whamcloud, where she led the development of the Intel Manager for Lustre* product.

Prior to Whamcloud, she was a software developer at personal genomics and biotechnology company 23andMe.

Prantis holds a Bachelor’s degree in Computer Science from Rochester Institute of Technology

104: GreyBeards talk new cloud defined (shared) storage with Siamak Nazari, CEO Nebulon

Ray has known Siamak Nazari (@NebulonInc), CEO Nebulon for three companies now but has rarely had a one (two) on one discussion with him. With Nebulon just emerging from stealth (a gutsy move during the pandemic), the GreyBeards felt it was a good time to get Siamak on the show to tell us what he’s been up to. Turns out he and Nebulon decided it was time to completely rethink/rearchitect shared storage for the new data center.

At his prior company, Siamak spent a lot of time with many customers discussing the problems they had dealing with the complexity of managing, provisioning and maintaining multiple shared storage arrays. Somewhere in all those discussions Siamak saw this as a problem that needed a radical solution. If we could just redo shared storage from the ground up, there might be a solution to all these problems.

Redefining shared storage

Nebulon’s new approach to shared storage starts with an SPU card which replaces SAS RAID cards in a server. But instead of creating SAS RAID groups, the SPU creates a shareable, enterprise class, pool of storage across a throng of servers.

They call a collection of servers with SPUs, Cloud Defined Storage (CDS) and it creates a Nebulon nPod. An nPod essentially consists of multiple servers with SPU cards, with or without attached SSD storage, that are provisioned, managed and monitored via the cloud. Nebulon nPod servers are elements or nodes of a shared storage pool across all interconnected SPU servers in a data center.

In an SPU server with local (SAS, SATA, NVMe) SSD storage, the SPU creates an erasure coded pool of storage which can be used to serve (SAS) LUNs to this or any other SPU attached server in the nPod. In a SPU server without local SSD storage, the SPU provides access to any other SPU server shared storage in the nPod. Nebulon nPods only works with flash storage, it doesn’t support spinning media.

The SPU can supply boot storage for its server. There’s no need to have the CPU running OS code to use nPod shared storage. Yes, the SPU needs power and an active PCIe bus to work, but the functionality of an SPU doesn’t require an operational OS to work. The SPU provides a SAS LUN interface to server CPUs.

Each SPU has dual port access to an inter-cluster (25GbE) interconnect that connects all SPUs to the nPod. The nPod inter-cluster protocol is proprietary but takes advantage of standard TCP/IP services across the network with standard 25GbE switching.

The SPU firmware insures that it stays connected as long as power is available to the server. Customers can have more than one SPU in a server but these would be used for more IO performance. Each SPU also has 32GB of NVRAM for caching purposes and it’s also used for power fail fault tolerance.

In the unlikely case that the server and SPU are completely down (e.g. power outage), clients can still access that SPUs data storage, if it was mirrored (see below). When the SPU server comes back up, it will be resynched with any data that had been changed.

Other Nebulon storage features

Nebulon supports data-at-rest encryption, compression and deduplication for customer data. That way customer data is never in plain text as it travels across the nPod or even within the server from the SPU to SSD storage. Also any customer data written to an nPod can be optionally mirrored and as noted above, is protected via erasure coding.

The SPU also supports snapshotting of customer LUN data. So clients can take copies of LUNs and use these for backups, test, dev, etc. SPUs also support asynchronous or synchronous replication between nPods. For synchronous replication and mirrored data, the originating host only sees the IO complete after the data has been received at the target SPU or nPod.

Metadata for the nPod that defines LUN configurations and which server has LUN data is kept across the cluster in each SPU. But metadata on the location of user data within a server is only kept in that server’s SPU.

We asked Siamak whether nPods support SCM (storage class memory). He said not yet, but they’re looking at SCM NVMe storage for use as a potential metadata and data cache for SPUs.

Nebulon Application Centric storage

All the above storage features are present in most enterprise class storage systems. But what sets Nebulon apart from all other shared storage arrays is that their control plane is entirely in the cloud. That is customers point their browser to Nebulon’s control plane and use it to configure, provision and manage the nPod storage pool. Nebulon supports application templates that can be used to configure nPod storage to support standardized applications, such as VMware VMs, MongoDB, persistent storage for K8S containers, bare metal Linux apps, etc.

With the nPod’s control plane in the cloud it makes provisioning, managing and monitoring storage services much more agile. Nebulon can literally roll out new control plane updatesy to their install base on an almost daily basis. Just like any other cloud based or SAAS application. Customers receive the updated nPod control plane functionality by simply refreshing their browser page.

Nebulon’s GoToMarket

Near the end of our podcast, we asked Siamak about how Nebulon was going to access the market. Nebulon’s goto market is to use server OEMs. That is, they have signed agreements with two (and working on a third) server vendors to sell SPU cards with Nebulon control plane access.

During server purchases, customers configure their servers but now along with SAS RAID card options they will now see an Nebulon SPU option. OEM server vendors will bundle SPU hardware and Nebulon control plane access along with all other server components such as CPU’s, SSDs, NICs, etc, This way, the customer will receive a pre-installed SPU card in their server and will be ready to configure nPod LUNs as soon as the server powers on in their network.

Nebulon will go GA in the 3rd quarter.

The podcast ran ~43 minutes. Siamak has always been a pleasure to talk with and is very knowledgeable about the problems customers have in today’s data center environments. Nebulon has given him and his team the way to rethink storage and address these serious issues. Matt and I had a good time talking with Siamak. Listen to the podcast to learn more.

This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png
This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png

Siamak Nazari, CEO Nebulon

Siamak Nazari is the CEO and Co-founder of Nebulon. Siamak has over 25 years of experience working on distributed and highly available systems.

In his position as HPE Fellow and VP, he was responsible for setting technical direction for HPE 3PAR and its portfolio of software and hardware. He worked on HPE 3PAR technology from 2000 to 2018, responsible for designing and implementing distributed memory management and the high availability features of the system.

Prior to joining 3PAR, Siamak was the technical lead for distributed highly available Proxy Filesystem (pxfs) of Sun Cluster 3.0.

0101: Greybeards talk with Howard Marks, Technologist Extraordinary & Plenipotentiary at VAST

As most of you know, Howard Marks (@deepstoragenet), Technologist Extraordinary & Plenipotentiary at VAST Data used to be a Greybeards co-host and is still on our roster as a co-host emeritus. When I started to schedule this podcast, it was going to be our 100th podcast and we wanted to invite Howard and the rest of the co-hosts to be on the call to discuss our podcast. But alas, the 100th Greybeards podcast came and went, before we could get it done. So we decided to refocus this podcast back on VAST Data.

We talked with Howard last year about VAST and some of this podcast covers the same ground (see last year’s podcast with Howard on VAST Data) but I highlighted below different aspects of their product that we also discussed.

For starters, VAST just finalized a recent round of funding, which if I recall, valued them at over $1B USD, or yet another data storage unicorn.

VAST is a scale out, disaggregated, unstructured data platform that takes advantage of the economics of QLC SSD (from Intel) combined with the speed of 3D XPoint storage class memory (Optane SSD, also from Intel) to support customer data. Intel is an investor in VAST.

VAST uses mutliple front end (controller) servers, with one or more HA NVMe drive module(s) connected via a dual infiniband or 100Gbps Ethernet RDMA cluster interconnect. The HA NVMe drive module has two (IO modules) adapter cards, one for each connection that takes IO and data requests and transfers them across a PCIe bus which connects to QLC and Optane SSDs. They also have a Mellanox (another investor) switch on their backend with a (round robin) DNS router to connect hosts to their storage (front-end) servers.

Each backend HA NVMe drive module has 12 1.5TB Optane U.2 SSDs and 44 15.4TB QLC SSDs, for a total of 56 drives. Customer data is first written to Optane and then destaged to QLC SSD.

QLC has the advantage of being 4 bits per cell (for a lower $/GB stored) but it’s endurance or drive writes/day (dw/d)) is significantly worse than TLC. So VAST has had to work to increase QLC endurance in their system.

Natively, QLC offers ~0.2 dw/d when doing random 4K writes. However, if your system does 128KB sequential writes, it offers 4.0 dw/d. VAST destages data from Optane SSDs to QLC in 1MB chunks which both optimizes endurance and reduces garbage collection write amplification within the drive.

Howard mentioned their frontend servers are stateless, i.e., maintain no state information about any IO activity going on. Any IO state information is maintained by their system in Optane SSDs. Each server maintains a work log (like) structure on Optane that describes what they are doing in support of host IO and other activities. That way, if one front end server goes down, another one can access its log and take over its activity.

Metadata is also maintained only on Optane SSDs. Howard called their metadata structure a V-tree (B-tree). VAST mirrors all meta-data and customer data to two Optane SSDs. So if one Optane SSD goes down, its pair can be used to continue operations.

In last years podcast we talked at length about VAST data protection and data reduction capabilities so we won’t discuss these any further here.

However, one thing worth noting is that VAST has a very large RAID (erasure code protection) stripe. Data is written to the QLC SSDs in a VAST designed, locally decodable erasure coding format.

One problem with large stripes is rebuild time. VAST’s locally decodable parity codes help with this but the other thing that helps is distributing rebuild IO activity to all front end servers in the system.

The other problem with large stripe sizes is garbage collection. VAST segregates customer data by “temporariness” based on their best guess. In this way all data in one stripe should have similar lifetimes. When it’s time for stripe garbage collection, having all temporary data allows VAST to jettison the whole stripe (or most of it) rather than having to collect and re-write old stripe data to another new stripe.

VAST came out supporting NFSv3 and S3 object storage protocols, Their next release adds support for SMB 2.2, data-at-rest encryption and snapshotting to an external S3 store. As you may recall SMB is a stateful protocol. In VAST’s home grown, SMB implementation, front end servers can take over SMB transactions from other failed servers, without having to fail the whole transaction and start over again.

VAST uses a fail in place, maintenance policy. That is failed SSDs are not normally replaced in customer deployments, rather blocks, pages, or SSDs are marked as failed and the spare capacity available in the drive enclosure is used to provide space for any needed rebuilt data.

VAST offers a 10 year maintenance option where the customer keeps the same storage for 10 full years. That way customers don’t have to migrate data from one system to another until their 10 years are up.

The podcast runs a little under 44 minutes. Howard and I can talk forever. He is always a pleasure to talk with as well as extremely knowledgeable about (VAST) storage and other industry solutions.  The co-hosts and I had a great time talking with him again. Listen to the podcast to learn more.

This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png

Howard Marks, Technologist Extraordinary and Plenipotentiary, VAST Data, Inc.

Howard Marks brings over forty years of experience as a technology architect for hire and Industry observer to his role as VAST Data’s Technologist Extraordinary and Plienopotentary. In this role, Howard demystifies VAST’s technologies for customers and customer requirements for VAST’s engineers.

Before joining VAST, Howard ran DeepStorage an industry test lab and analyst firm. An award-winning speaker, he has appeared at events on three continents including Comdex, Interop and VMworld.

Howard is the author of several books (all gratefully out of print) and hundreds of articles since Bill Machrone taught him journalism at PC Magazine in the 1980s.

Listeners may also remember that Howard was a founding co-Host of the Greybeards-on-Storage Podcast.

0100: GreyBeards talk with Colin Gallagher, VP Dig. Infra. Prod. Mkt. @ Hitachi Vantara

Sponsored By:

We have known Colin Gallagher (@worldc3), VP, Digital Infrastructure Product Marketing at Hitachi Vantara, for a long time and he has always been an all around smart storage guy. Colin’s team at Hitachi Vantara are bringing out a brand new, midrange storage system and we thought it would be a good time to catch up with him and learn about it.

The new Hitachi Vantara VSP E990 Storage System is an all NVMe SSD array for medium sized enterprises that need predictable, high IOPS-low latency performance with enterprise class functionality and world class reliability/availability. We asked Colin why they needed all NVMe levels of performance. Colin replied that many of these data centers are starting to use advanced HPC, AI, and data analytics applications together with their standard Oracle, SAP and Microsoft solutions. These combined workloads have an acute need for predictable, high end performance and enterprise class functionality in order to work well.

The VSP E99O comes from a long heritage of enterprise storage at Hitachi, most recently embodied in the Hitachi VSP 5000. In fact, the VSP E990 uses the same storage OS as the VSP 5000, with changes made to streamline it for use with higher performing, all NVMe storage on a dual controller architecture.

This means all the advanced storage functionality of the high end enterprise VSP 5000 are available on the VSP E990 midrange system, minus some items not pertinent to midrange such as mainframe attach.

Many of the software changes involved cache and cache management. In the VSP E990, cache is now automatically shared and distributed across controllers reducing the performance impact of mirroring. Further, Hitachi has added more cores and higher performing processors as well. As a result, the VSP E990 all NVMe array can provide up to 5.8M IOPS and a best in any networked storage system, IO response time as low as 64 µsec. Colin also mentioned that they have reduced flash drive rebuild times by 80%.

The VSP E990 comes in a 4U base configuration and can offer from ~6TB to up to over 6PB of virtual capacity with drive expansion. In 8U plus controller (on the audio, it was incorrectly stated as 6U, The Eds.), the VSP E990 provides slots for up to 96 NVMe SSDs. Just like all VSP storage, the VSP E990 also offers the Hitachi 100% Data Availability Guarantee, the world’s oldest. Further, the VSP E990 supports 6-9s (99.9999%) reliability.

In addition the VSP E990 also supports Hitachi Adaptive Data Reduction, which compresses and deduplicates data to increase virtual capacity and reduce physical footprint. In the VSP E990, Adaptive Data Reduction uses AI to determine the best time to deduplicate data while at the same time optimizing host IO performance and effective storage capacity.

Hitachi Ops Center

During the last year or so Hitachi Vantara introduced its new Hitachi Ops Center solution to better administer and manage storage and other digital infrastructure. Ops Center now comes with 4 components: Administrator, Protector (copy data management), Automator and Analyzer.

  • Administrator supplies an element manager for VSP, other storage, and digital infrastructure in the data center.
  • Protector provides enterprise class, copy data management to protect, migrate, and archive VSP data storage.
  • Analyzer supports AI analysis of the data center’s storage operations to monitor SLAs, troubleshoot shoot problems, and improve storage performance as well as 3rd party compute, network and storage.
  • Automator supplies a series of templates and services to automate mundane, manual storage and other digital infrastructure tasks required to configure, operate and manage these systems in the data center. Automator provides a number of templates which customers can tailor to automate infrastructure operations such as provisioning an ESXi data store. The templates together with Automator services automatically carry out all the OS, fabric and storage/digital infrastructure tasks and activities required to perform these functions.

Hitachi EverFlex consumption models

Hitachi Vantara is also introducing EverFlex, a new series of consumption models, that any customer can use to provide more financial flexibility in their data center digital infrastructure acquisitions, deployments, and management.

EverFlex offers customers the option to purchase, lease or buy on a pay-as-you-go, cloud-like basis any Hitachi Vantara storage or digital infrastructure. Colin mentioned there were two ways that pay-as-you-go can operate,

  1. Customers pay on pure capacity over time basis. Here the customer would contract for a certain capacity and Hitachi Vantara would install storage/digital infrastructure capacity and would bill them monthly for it.
  2. Customers pay on an SLA over time basis. Here they would contract for a specific SLA, such as IOPS or other performance characteristic and Hitachi Vantara would install and maintain any storage/digital infrastructure to meet that SLA and bill them monthly for it.

Colin said that all Hitachi, world-class services are also now available to be purchased under EverFlex.

The podcast ran ~24 minutes. Colin has always been easy to talk with and very knowledgeable about storage. We were very impressed with the performance and innovation in the VSP E990 as well as Ops Center and EverFlex. Keith and I had fun discussing these solutions with Colin. Listen to the podcast to learn more.

This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png

Colin Gallagher, VP Digital Infrastructure Product Marketing at Hitachi Vantara

Colin is Vice President for Digital Infrastructure Product Marketing at Hitachi Vantara where he leads product marketing for storage systems, storage software, and converged/hyper-converged solutions.

Over his 25-year career he has lead marketing and product management team teams at several major storage companies. Colin has a passion for telling compelling stories about technical products that help customers solve both business and personal pain – and he enjoys the challenge of telling them in creative ways.

He holds a bachelor’s degree from Georgetown University and an MBA from Northeastern University. Colin tries to put as many miles on his bike as possible, “hangs out” on twitter as @worldc3, and (unlike the GreyBeards) is team Oxford comma.