GreyBeards YE2018 IT industry wrap-up podcast

In this, our yearend industry wrap up episode, we discuss trends and technology impacting the IT industry in 2018 and what we can see ahead for 2019 and first up is NVMeoF

NVMeoF has matured

In the prior years, NVMeoF was coming from startups, but last year it’s major vendors like IBM FlashSystem, Dell EMC PowerMAX and NetApp AFF releasing new NVMeoF storage systems. Pure Storage was arguably earliest with their NVMeoF JBOF.

Dell EMC, IBM and NetApp were not far behind this curve and no doubt see it as an easy way to reduce response time without having to rip and replace enterprise fabric infrastructure.

In addition, NVMeoFstandards have finally started to stabilize. With the gang of startups, standards weren’t as much of an issue as they were more than willing to lead, ahead of standards. But major storage vendors prefer to follow behind standards committees.

As another example, VMware showed off an NVMeoF JBOF for vSAN. A JBoF like this improves vSAN storage efficiency for small clusters. Howard described how this works but with vSAN having direct access to shared storage, it can reduce data and server protection requirements for storage. Especially, when dealing with small clusters of servers becoming more popular these days to host application clusters.

The other thing about NVMeoF storage is that NVMe SSDs have also become very popular. We are seeing them come out in everyone’s servers and storage systems. Servers (and storage systems) hosting 24 NVMe SSDs is just not that unusual anymore. For the price of a PCIe switch, one can have blazingly fast, direct access to a TBs of NVMe SSD storage.

HCI reaches critical mass

HCI has also moved out of the shadows. We recently heard news thet HCI is outselling CI. Howard and I attribute this to the advances made in VMware’s vSAN 6.2 and the appliance-ification of HCI. That and we suppose NVMe SSDs (see above).

HCI makes an awful lot of sense for application clusters that VMware is touting these days. CI was easy but an HCI appliance cluster is much, simpler to deploy and manage

For VMware HCI, vSAN Ready Nodes are available from just about any server vendor in existence. With ready nodes, VARs and distributors can offer an HCI appliance in the channel, just like the majors. Yes, it’s not the same as a vendor supplied appliance, doesn’t have the same level of software or service integration, but it’s enough.

[If you want to learn more, Howard’s is doing a series of deep dive webinars/classes on HCI as part of his friend’s Ivan’s ipSpace.net. The 1st 2hr session was recorded 11 December, part 2 goes live 22 January, and the final installment on 5 February. The 1st session is available on demand to subscribers. Sign up here]

Computional storage finally makes sense

Howard and I 1st saw computational storage at FMS18 and we did a podcast with Scott Shadley of NGD systems. Computational storage is an SSD with spare ARM cores and DRAM that can be used to run any storage intensive, Linux application or Docker container.

Because it’s running in the SSD, it has (even faster than NVMe) lightening fast access to all the data on the SSD. Indeed, And the with 10s to 1000s of computational storage SSDs in a rack, each with multiple ARM cores, means you can have many 1000s of cores available to perform your data intensive processing. Almost like GPUs only for IO access to storage (SPUs?).

We tried this at one vendor in the 90s, executing some database and backup services outboard but it never took off. Then in the last couple of years (Dell) EMC had some VM services that you could run on their midrange systems. But that didn’t seem to take off either.

The computational storage we’ve seen all run Linux. And with todays data intensive applications coming from everywhere these days, and all the spare processing power in SSDs, it might finally make sense.

Futures

Finally, we turned to what we see coming in 2019. Howard was at an Intel Analyst event where they discussed Optane DIMMs. Our last podcast of 2018 was with Brian Bulkowski of Aerospike who discussed what Optane DIMMs will mean for high performance database systems and just about any memory intensive server application. For example, affordable, 6TB memory servers will be coming out shortly. What you can do with 6TB of memory is another question….

Howard Marks, Founder and Chief Scientist, DeepStorage

Howard Marks is the Founder and Chief Scientist of DeepStorage, a prominent blogger at Deep Storage Blog and can be found on twitter @DeepStorageNet.

Raymond Lucchesi, Founder and President, Silverton Consulting

Ray Lucchesi is the President and Founder of Silverton Consulting, a prominent blogger at RayOnStorage.com, and can be found on twitter @RayLucchesi. Signup for SCI’s free, monthly e-newsletter here.

77: GreyBeards talk high performance databases with Brian Bulkowski, Founder & CTO, Aerospike

In this episode we discuss high performance databases and the storage needed to get there, with Brian Bulkowski, Founder and CTO of Aerospike. Howard met Brian at an Intel Optane event last summer and thought he’d be a good person to talk with. I couldn’t agree more.

Howard and I both thought Aerospike was an in memory database but we were wrong. Aerospike supports in memory, DAS resident and SAN resident distributed databases.

Database performance is all about the storage (or memory)

When Brian first started Aerospike, they discovered that other enterprise database vendors were using fast path SAS SSDs for backend storage and so that’s where Aerospike started with on storage.

As NVMe SSDs came out, Brian expected higher performance but wasn’t too impressed with what he found out with NVMe SSD’s real performance as compared to SAS SSDs. However lately, the SSD industry has bifurcated into fast, low-capacity (NVMe) SSDs and slow, large capacity (SAS) SSDs. And over time the Linux Kernel (4.4 and above) has sped up NVMe IO stack. So now he has become more of a proponent of NVMe SSDs for high performing database storage.

In addition to SAS and NVMe SSDs, Aerospike supports SAN storage. One recent large customer uses SAN shared storage and loves the performance. Moreover, Aerospike also offers an in memory database option for the ultimate in high performance (low capacity) databases.

Write IO performance

One thing that Aerospike is known for is their high performance under mixed R:W workloads. Brian says just about any database can perform well with an 80:20 R:W IO mix, but at 50:50 R:W, most databases fall over.

Aerospike did detailed studies of SSD performance with high write IO and used SSD native APIs to understand what exactly was going on with SAS SSDs. Today, they understand when SSDs go into garbage collection and and can quiesce IO activity to them during these slowdowns. Similar APIs are available for NVMe SSDs.

Optane memory

The talk eventually turned to Optane DIMMs (3D Crosspoint Memory). With Optane DIMMs, server memory address space will increase from 1TB to 6TB. From Brian’s perspective this is still not enough to host a copy of a typical database but it would suffice to hold cache a  database index. Which is exactly how they are going to use Optane DIMMs.

Optane DIMMs are accessed via PMEM (an Intel open source memory access API) and can specify  caching (L1-L2-L3) characteristics, so that the processor(s) data and instruction caching tiers don’t get flooded with database information. Aerospike has done for in-memory databases in the past, it’s just requires a different API.

As a distributed database, they support data protection for DAS and in memory databases through mirroring, dual redundancy.  But Aerospike was developed as a  distributed database, so data can be sharded, across multiple servers to support higher, parallelized performance.

With Optane DIMMs being 1000X faster than NVMe SSD, the performance bottleneck has now moved back to the network. Given the dual redundancy data protection scheme, any data written on one server would need to be also written (across the network) to another server.

Data consistency in databases

This brought us around to the subject of database consistency.  Brian said Aerospike database consistency for reads was completely parameterized, e.g. one can specify linear (database wide) consistency to session level consistency, with some steps in between. Aerospike is always 100% write consistent but read consistency can be relaxed for better performance.

Howard and I took a deep breath and said data has to be a 100% consistent. Brian disagreed, and in fact, historically relational databases were not fully read consistent. Somehow this felt like a religious discussion and in the end, we determined that database consistency is just another knob to turn if you want high performance.

Brian mentioned that  Aerospike is available in an open source edition which anyone can access and download. He suggested we tell our DBA friends about it, maybe, if we have any…

The podcast runs ~44 minutes. Brian’s been around databases for a long time and seemingly, most of that time has been figuring out the best ways to use storage to gain better performance. He has a great perspective on  NVMe vs. SAS SSD performance as well as (real) memory vs SCM performance, which we all need to understand better as SCM rolls out. Possibly, barring the consistency discussion, Brian was also easy to talk with.  Listen to our podcast to learn more.

Brian Bulkowski, Founder and CTO, Aerospike

Brian is a Founder and the CTO of Aerospike. With almost 30 years in Silicon Valley, his motivation for starting Aerospike was the confluence of what he saw as the rapidly advancing flash storage technology with lower costs that weren’t being fully leveraged by database systems as well as the scaling limitations of sharded MySQL systems and the need for a new distributed database.

He was able to see these needs as both a Lead Engineer at Novell and Chief Architect at Cable Solutions at Liberate – where he built a high-performance, embedded networking stack and high scale broadcast server infrastructure.

74: Greybeards talk NVMe shared storage with Josh Goldenhar, VP Cust. Success, Excelero

Sponsored by:

In this episode we talk NVMe shared storage with Josh Goldenhar (@eeschwa), VP, Customer Success at Excelero. Josh has been on our show before (please see our April 2017 podcast), the last time with Excelero’s CTO & Co-founder, Yavin Romen.

This is Excelero’s 1st sponsored GBoS podcast and we wish to welcome them again to the show. Since Excelero’s NVMesh storage software is in customer hands now, Josh is transitioning to add customer support to his other duties.

NVMe storage industry trends

We started our discussion with the maturing NVMe market. Howard mentioned he heard that NVMe SSD sales have overtaken SATA SSD volumes. Josh mentioned that NVMe SSDs are getting harder to come by,  driven primarily by Super 8 (8 biggest hyper-scalars) purchases. And even when these SSDs can be found, customers are paying a premium for NVMe drives.

The industry is also starting to sell larger capacity NVMe SSDs. Customers view this as a way of buying cheaper ($/GB) storage. However, most NVMe shared storage systems use mirroring for data protection, which cuts effective (protected) capacity in half, doubling cost/GB.

Another change in the market, is that with today’s apps many customers no longer need all the  read AND write IO performance from their NVMe storage. For newer applications/workloads, writes are less frequent and as such, less a driver of application performance. But read performance is still critical.

The other industry trend is a number of new vendors offering NVMeoF (Ethernet) storage arrays (see: Pavillion Data’s, Atalla Systems’s, and Solarflare Communication’s  podcasts in just the last few months). Most of the startup systems are essentially top of rack shared NVMe SSDs and some with limited data protection/ management services.

Excelero’s NVMesh has offered a logical volume manager as well as protected NVMe shared storage since the start, with RAID 0 and protected, RAID 1/10 storage.

Excelero is coming out with a new release of its NVMesh™ software defined storage.

NVMesh 2

We were particularly interested in one of NVMesh 2’s new capabilities, its distributed data protection, which is based on Erasure Coding (EC, like RAID 6), with a stripe that includes 8+2 segments. Unlike mirroring/RAID1-10, EC only reduces effective NVMe storage capacity by 20% for protection. And also protects against 2 drive failures within a RAID group.

However, with distributed data protection, write IO will not perform as well as reads. But reads perform just as fast as ever.

As with any data protection, customers will need sufficient spare capacity to rebuild data for a failed device.

The latest release will be available to all current customers, on service contract. When available, customers should immediately start benefiting from the space efficient, distributed data protection for new data on the system.

The new release also adds Fibre Channel (as Howard correctly guessed  on the podcast) and TCP/IP protocols to their current InfiniBand, RoCE, and NVMeoF support as well as new performance analytics to help diagnose performance issues faster and at scale.

The podcast runs ~25 minutes. Josh has an interesting perspective on the NVMe storage market as well as competitive solutions and was great to talk with again. The new data protection functionality in Excelero NVMesh 2 signals an evolving NVMe storage market. As NVMe storage matures, the tradeoff between performance and data services, looks to be an active war zone for some time to come. Listen to the podcast to learn more.

Josh Goldenhar, Vice President Customer Success, Excelero

Josh has been responsible for product strategy and vision at leading storage companies for over two decades. His experience puts him in a unique position to understand the needs of customers.
Prior to joining Excelero, Josh was responsible for product strategy and management at EMC (XtremIO) and DataDirect Networks. Previous to that, his experience and passion was in large scale, systems architecture and administration with companies such as Cisco Systems. He’s been a technology leader in Linux, Unix and other OS’s for over 20 years. Josh holds a Bachelor’s degree in Psychology/Cognitive Science from the University of California, San Diego.

72: GreyBeards talk Computational Storage with Scott Shadley, VP Marketing NGD Systems

For this episode the GreyBeards talked with another old friend, Scott Shadley, VP Marketing, NGD Systems. As we discussed on our FMS18 wrap up show with Jim Handy, computational storage had sort of a coming out party at the show.

NGD systems started in 2013 and have  been working towards a solution that goes general availability at the end of this year. Their computational storage SSD supplies general purpose processing power sitting inside an SSD. NGD shipped their first prototypes in 2016, shipped FPGA version of their smart SSD in 2017 and already have their field upgradable, ASIC prototypes in customer hands.

NGD’s smart SSDs have a 4-core ARM processor and  run an Ubuntu Distro on 3 of them.  Essentially, anything that could be run on Ubuntu Linux, including Docker containers and Kubernetes could be run on their smart SSDs.

NGD sells standard (storage only) SSDs as well as their smart SSDs. The smart hardware is shipped with all of their SSDs, but is only enabled after customer’s purchase a software license key. They currently offer their smart SSD solutions in  America and Europe, with APAC coming later.

They offer smart SSDs in both a 2.5” and M.2 form factor. NGD Systemss are following the flash technology road map and currently offer a 16TB SSD in 2.5” FF.

How applications work on smart SSDs

They offer an open-source, SDK which creates a TCP/IP tunnel across the  NVMe bus that attaches their smart SSD. This allows the host and the SSD server to communicate and send (RPC) work back and forth between them.

A normal smart SSD work flow could be

  1. Host server writes data onto the smart SSD;
  2. Host signals the smart SSD to perform work on the data on the smartSSD;
  3. Smart SSD processes the data that has been sent to the SSD; and
  4. When smart SSD work is done, it sends a response back to the host.

I assume somewhere before #2 above, you load application software onto the device.

All the work to be done on smart SSDs could be the same for the attached SSD and the work could easily be distributed across all attached smart SSDs attached and the host processor. For example, for image processing, a host processor would write images to be processed across all the SSDs and have each perform image recognition and append tags (or other results info) metadata onto the image and then respond back to the host. Or for media transcoding, video streams could be written to a smart SSD and have it perform transcoding completely outboard.

The smart SSD processors access the data just like the host processor or could use services available in their SDK which would access the data much faster. Just about any data processing you could do on the host processor could be done outboard, on smart SSD processor elements. Scott mentioned that memory intensive applications are probably not a good fit for computational storage.

He also said that their processing (ARM) elements were specifically designed for low power operations. So although AI training and inference processing might be much faster on GPUs, their power consumption was much higher. As a result, AI training and inference processing power-performance would be better on smart SSDs.

Markets for smart SSDs?

One target market for NGD’s computational storage SSDs is hyper scalars. At FMS18, Microsoft Research published a report on running FAISS software on NGD Smart SSDs that led to a significant speedup. Scott also brought up one company they’re working with that was testing  to find out just how many 4K video  streams can be processed on a gaggle of smart SSDs. There was also talk of three letter (gov’t) organizations interested in smart SSDs to encrypt data and perform other outboard processing of (intelligence) data.

Highly distributed applications and data reminds me of a lot of HPC customers I  know. But bandwidth is also a major concern for HPC.  NVMe is fast, but there’s a limit to how many SSDs can be attached to a server.

However, with NVMeoF, NGD Systems could support a lot more “attached”  smart SSDs. Imagine a scoop of smart SSDs, all attached to a slurp of servers,  performing data intensive applications on their processing elements in a widely distributed fashion. Sounds like HPC to me.

The podcast runs ~39 minutes. Scott’s great to talk with and is very knowledgeable about the Flash/SSD industry and NGD Systems. His talk on their computational storage was mind expanding. Listen to the podcast to learn more.

Scott Shadley, VP Marketing, NGD Systems

Scott Shadley, Storage Technologist and VP of Marketing at NGD Systems, has more than 20 years of experience with Storage and Semiconductor technology. Working at STEC he was part of the team that enabled and created the world’s first Enterprise SSDs.

He spent 17 years at Micron, most recently leading the SATA SSD product line with record-breaking revenue and growth for the company. He is active on social media, a lover of all things High Tech, enjoys educating and sharing and a self-proclaimed geek around mobile technologies.

70: GreyBeards talk FMS18 wrap-up and flash trends with Jim Handy, General Dir. Objective Analysis

In this episode we talk about Flash Memory Summit 2018 (FMS18) and recent trends affecting the flash market with Jim Handy, General Director, Objective Analysis. This is the 4th time Jim’s been on our show and has been our go to guy on flash technology forever.

NAND supply?

Talking with Jim is always a far reaching discussion. We quickly centered on recent spot NAND pricing trends. Jim said the market is seeing a 10 to 12% pricing drop, Quarter/Quarter, almost 60% since the year started, in NAND spot pricing which is starting to impact long term contracts. During supply glut’s like this, DRAM spot prices typically drop 40-60% Q/Q, so maybe there’s more NAND price reductions on the way.

A new player in the NAND fab business was introduced at FMS18, Yangtze Memory Technology from China. Jim said they were one generation behind the leaders which says their product costs ($/NAND bit) are likely 2X the industry. But apparently, China is prepared to lose money until they can catch up.

I asked Jim if they have a hope of catching up – yes. For example, there’s been some shenanigans with DRAM technology and a Chinese DRAM Fab. They  have (allegedly)stolen technology from Micron’s Taiwan DRAM FAB. They in turn have sued Micron for patent infringement and won, locking Micron out of the Chinese DRAM market. With DRAM market tightening, Micron’s absence will hurt Chinese electronics producers. Others will step in, but Micron will have to focus DRAM sales elsewhere.

3D Xpoint/Optane?

There wasn’t much discussion on 3D XPoint. Intel did announce some customers for Optane SSDs and that they are starting to produce 3D XPoint in DIMMs. The Intel-Micron 3D XPoint partnership has disolved. Intel seems willing to continue to price their Optane and 3D XPoint DIMM below cost and make it up selling micro processors.

Jim predicted years back there would be little to no market for 3D Xpoint SSDs. With Optane SSDs at 5X higher cost than NAND SSDs and only 5X faster, it’s not a significant enough advantage to generate volumes needed to make a profitable product. But in a DIMM form factor, hanging off the memory bus, it’s 1000X faster than NAND, and with that much performance, it shouldn’t have a problem generating sufficient volumes to become profitable.

Other NAND/SCM news

We talked about the emergence of QLC NAND. With 3D NAND, there appears to be sufficient electrons to make QLC viable. The write speeds are still horrible,  ~1000X slower than SLC. But vendors are now adding SLC NAND (write cache) in their SSDs to sustain faster writes.

The other new technology from FMS18 was computational storage. Computational storage vendors are putting compute near (inside) an SSD to better perform IO intensive workloads. Some computational storage vendors   talked about their technology and how it could speed up select workloads

There’s SCM beyond 3D XPoint. These vendors have been quietly shipping for some time now, they just aren’t at the capacities/bit density to challenge NAND. Jim mentioned a few that were in production, EverSpin/MRAM, Adesto/ReRAM and Crossbar/FeRAM.

Jim said IBM was using EverSpin/MRAM technology in their latest FlashCore Modules for their FlashSystem 9100. And EverSpin MRAM is being used in satellites. Adesto/ReRAM is being used medical instrument market.

The podcast runs ~42 minutes. We apologize for the audio quality, we promise to do better next time. Jim’s been the GreyBeards memory and flash technology guru before our hair turned grey and is always enlightening about the flash market and technology trends.  Listen to the podcast to learn more.

Jim Handy, General Director, Objective Analysis

Jim Handy of Objective Analysis has over 35 years in the electronics industry including 20 years as a leading semiconductor and SSD industry analyst. Early in his career he held marketing and design positions at leading semiconductor suppliers including Intel, National Semiconductor, and Infineon.

A frequent presenter at trade shows, Mr. Handy is known for his technical depth, accurate forecasts, widespread industry presence and volume of publication. He has written hundreds of market reports, articles for trade journals, and white papers, and is frequently interviewed and quoted in the electronics trade press and other media.  He posts blogs at www.TheMemoryGuy.com, and www.TheSSDguy.com