93: GreyBeards talk HPC storage with Larry Jones, Dir. Storage Prod. Mngmt. and Mark Wiertalla, Dir. Storage Prod. Mkt., at Cray, an HPE Enterprise Company

Supercomputing Conference 2019 (SC19) is coming to Denver next week and in anticipation of that show, we thought it would be a good to talk with some HPC storage group. We contacted HPE and given their recent acquisition of Cray, they offered up Larry and Mark to talk about their new ClusterStor E1000 storage system.

There are a number of components that go into Cray supercomputers and besides the ClusterStor, Larry and Mark mentioned their new SlingShot cluster interconnect which is Ethernet based with significant enhancements to congestion handling. But the call focused on ClusterStor.

What is ClusterStor

ClusterStor, is a Lustre file system hardwareappliance. Lustre has always been popular with the HPC crowd as it offered high bandwidth file services. But Lustre often took a team of (PhD) scientists to configure, deploy and run properly because of all the parameters that had to be setup for optimum performance.

Cray’s ClusterStor was designed to make configuring, deploying and running Lustre a lot simpler with a GUI and system defaults that provided an optimal running environment. But if customers still want access to all Lustre features and functionality, all the Lustre parameters can still be tweaked to personalize it.

What sort of appliance

The ClusterStore team has created a Lustre storage appliance using two systems, a 2U-24 NVMe SSD system and a 4U-106 disk drive system. Both systems use PCIe Gen 4 buses which offer 2X the bandwidth of Gen 3 and NVMe Gen 4 SSDs. Each ClusterStore E1000 appliance comes with 2 servers for HA and the storage behind it.

Larry said the 2U NVMe Gen 4 appliance offers 80GB/sec of read and 60GB/sec of write data bandwidth. And a full rack of these, could support ~2.5TB/sec of data bandwidth. One TB/sec seems like an awful lot to the GreyBeards, 2.5TB/sec, out of this world.

We asked if it supported InfiniBAND interconnects? Yes, they said it supports the latest generation of InfiniBAND but it also offers Cray’s own (SlingShot) Ethernet interconnect, unusual for HPC environments. And as in any Lustre parallel file system, servers accessing storage use Lustre client software.

ClusterStor Data Services

But on the backend, where normally one would see only LDISKFS for backend storage, ClusterStor also offers ZFS. Larry and Mark said that LDISKFS is faster but ZFS offers more functionality like snapshots and data compression.

Many of the Top 100 & Top 500 supercomputing environments are starting to deploy ML DL (machine learning-deep learning) workloads along with their normal HPC activities. But whereas HPC work has historically depended on bandwidth to read, write and move large files around, ML DL deals with small files and needs high IOPS. ClusterStor was designed to satisfy both high bandwidth and high IOPS workloads.

In previous HPC Lustre flash solutions, customers had to deal with the complexity of where to place data, such as on flash or on disk. But with net ClusterStor E1000, the system can do all this for you. That is it will move data from disk to flash when it sees an advantage to doing so and move it back again when that advantage is gone. But, just as with Lustre configuration parameters above, customers can still pre-stage data to flash.

The other challenge for HPC environments is extreme size. Cray and others are starting to see requirements for Exascale (exabyte, 10**18) byte) storage systems. In fact, Cray has a couple of ClusterStor E1000 configurations of 400PB or more already, As these systems age they may indeed grow to exceed an exabyte.

With an exabyte of data, systems need to support billions of files/inodes and better metadata services and indexing. ClusterStor offers optimized inode indexing and search to enable HPC users to quickly find the data they are looking for. Further, ClusterStor offers, data at rest encryption and supports virtual file systems, for multi-tenancy.

With a ZFS backend, ClusterStor can supply data compression and snapshots. Cray has tested ZFS compression on HPC scientific ( mostly already application compressed) data and still see ~30% reduction is storage footprint. At an exabyte of storage 30% can be a significant cost reduction

The podcast ran long, ~46 minutes. Larry and Mark had a good knowledge of the HPC storage space and were easy to talk with. Matt’s an old ZFS hand, so wanted to take even more about ZFS. I had a good time discussing ClusterStor and Lustre features/functionalit and how the HPC workloads are changing. Listen to the podcast to learn more. [The podcast was recorded on November 6th, not the 5th as mentioned in the lead in, Ed.]

This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png

Larry Jones, Director Storage Product Management

Larry Jones is a director of storage product management for Cray, a Hewlett Packard Enterprise company.

Jones previously held senior product management roles at Seagate, DDN and Panasas.

Mark Wiertalla, Director Storage Product Marketing

Mark Wiertalla is a product marketing director for Cray, a Hewlett Packard Enterprise company.

Prior to Cray, Wiertalla held product manager roles at EMC and SGI.

86: Greybeards talk FMS19 wrap up and flash trends with Jim Handy, General Director, Objective Analysis

This is our annual Flash Memory Summit podcast with Jim Handy, General Director, Objective Analysis. It’s the 5th time we have had Jim on our show. Jim is also an avid blogger writing about memory and SSD at TheMemoryGuy and TheSSDGuy, respectively.

NAND market trends

Jim started off our discussion on the significant price drop in the NAND market over the last two years. He said that prices ($/GB) have dropped 60% last year and are projected to drop about 30% this year.

The problem is over production and as vendors are prohibited from dropping prices below cost, they tend to flatten out at production cost. NAND pricing will remain there until supplies start tightening again. Jim doesn’t see that happening until 2021.

He says although this NAND price drops don’t end up reducing SSD prices, it does allow us to buy more SSD storage for the same price. So maybe back earlier this century NAND cost $10K/GB, now it’s around $0.05/GB.

Jim also mentioned that Chinese NAND fabs should start coming online in 2021 too. They have been spending lots of money trying to get their own NAND manufacturing running. Jim said the reason they want to do this is because the Chinese are spending more $s on chips , than they do for oil.

Computational storage, a bright spot

At the show, computational storage (for more hear our GBoS podcast with Scott Shadley, NGD Systems) was hot again this year. Jim took a shot at defining computational storage and talked about the proliferation of ARM cores in SSDs. Keith mentioned that Moore’s law is making the incremental cost of adding more cores close to zero.

Jim said SAMSUNG already have 6 ARM cores in their SSDs, but most other vendors use 3 cores. I met with NetInt at the show who are focused on computational storage for video transcoding. Keith doesn’t think this would be a good fit, because it takes a lot of computation. But maybe as it’s easily distributable (out to a gaggle of SSDs) and it’s data intensive it might work ok. Jim also mentioned while adding cores may be cheap, increasing memory (DRAM) is not.

According to Jim, hyper-scalars are starting to buy computational storage technology. He’s not sure if they are just trying it out or have some real work running on the technology.

SCM news

We talked about Toshiba’s new XC flash and SSDs. Jim said this is just SLC NAND (expensive $/GB and high endurance) with increased parallelism and reduced latency data paths. Samsung’s Z-NAND is similar. Toshiba claims XL Flash SSDs are another storage class memory (SCM, see our 3DX blog post). Toshiba are pricing XL Flash SSDs at about 10X the $/GB price of 3D TLC NAND, or roughly the same as Optane SSDs.

We next turned to Optane DC PM, which Intel is selling at a loss but as it works only with Cascade Lake CPUs, can help increase CPU adoption. So Intel can absorb Optane DC PM losses by selling more (highly profitable) Cascade Lake systems.

Keith mentioned that SAP HANA now works with Cascade Lake-Optane DC PM. This is driving up demand for the new DC PM and new CPUs. Keith said with the new larger size in memory databases from DC PM, HANA able to do more work, increasing Cascade Lake-Optane DC PM-SAP HANA adoption.

Micron also manufacturers 3DX. Jim said they are in an enviable position as they can . supply the chips (at costs) to Intel, so they know chip volumes and can see what Intel is charging for the technology. So, if at some point, it has runway to become profitable, they can easily enter as a sole secondary source for the technology.

Other NAND news

How high can 3D TLC NAND go? Jim said most 3D NAND sold on the market is 64 layers high but suppliers are already shipping more layers than that. All NAND suppliers, bar one, have said their next generation 3D TLC NAND will be over 100 layers. Some years back one vendor said the technology could go up to 500 layers. This year Samsung, said they see the technology going to 800 layers.

We’ve heard of SLC, MLC, TLC and QLC but at the show there was talk of PLC or five level cell NAND technology. If they can make the technology successful, PLC should reduce manufacturing costs, another 10% ($/GB).

We discussed a lot more that was highlighted at the show, including PCIe fabric/composable infrastructure, zoned (NVMe) name spaces (redux SMR disks) and the ongoing success of the show. We had a brief discussion on when if ever NAND costs will be less than disk ($/GB).

The podcast is a little under ~40 minutes. Jim is an old friend, who is extremely knowledgeable about NAND & DRAM technology as well as semiconductor markets in general. Jim’s always been a kick to talk with. Listen to the podcast to learn more.

Jim Handy, General Director, Objective Analysis

Jim Handy of Objective Analysis has over 35 years in the electronics industry including 20 years as a leading semiconductor and SSD industry analyst. Early in his career he held marketing and design positions at leading semiconductor suppliers including Intel, National Semiconductor, and Infineon.

A frequent presenter at trade shows, Mr. Handy is known for his technical depth, accurate forecasts, widespread industry presence and volume of publication.

He has written hundreds of market reports, articles for trade journals, and white papers, and is frequently interviewed and quoted in the electronics trade press and other media. 

He posts blogs at www.TheMemoryGuy.com, and www.TheSSDguy.com

85: GreyBeards talk NVMe NAS with Howard Marks, Technologist Extraordinary and Plenipotentiary, VAST Data Inc.

As most of you know, Howard Marks was a founding co-Host of the GreyBeards-On- Storage podcast and has since joined with VAST Data, an NVMe file and object storage vendor headquartered in NY with R&D out of Israel. We first met with VAST at StorageFieldDay18 (SFD18, video presentation). Howard announced his employment at that event. VAST was a bit circumspect at their SFD18 session but Howard seems to be more talkative, so on the podcast we learn a lot more about their solution.

VAST Data is essentially an NFS-S3 object store, scale out solution with both stateless, VAST Data storage servers and JBoF drive enclosures with Optane and NVMe QLC SSDs. Storage servers or JBoFs can be scaled independently. They don’t support tiering or DRAM caching of data but instead seem to use the Optane SSDs as a write buffer for the QLC SSDs.

At the SFD18 event their spokesperson said that they were going to kill off disk storage media. (Ed’s note: Disk shipments fell 18% y/y in 1Q 2019, with enterprise disk shipments at 11.5M units, desktop at 24.5M units and laptops at 37M units).

The hardware

The VAST Data storage servers are in a 2U/4 server configuration, that runs interface protocols (NFS & S3), data reduction (see below), data reformating/buffering etc. They are stateless servers with all the metadata and other control state maintained on JBoF Optane drives.

Each drive enclosure JBoF has 12 Optane SSDs and 44 U.2 QLC (no DRAM/no super cap) SSDs. This means there are no write buffers on the QLC SSDs that can lose data when power failures occur. The interface to the JBoF is NVMeoF, either RDMA-RoCE Ethernet or InfiniBand (customer selected). Their JBoFs have high availability, with dual fabric modules that support 2-100Gbps Ethernet/InfiniBand ports per module, 4 per JBoF.

Minimum starting capacity is 500TB and they claim support up to Exabytes. Although how much has actually been tested is an open question. They also support billions of objects/files.

Guaranteed better data reduction

They have a rather unique, multi-level, data reduction scheme. At the start, data is chunked in variable length chunks. They use heuristics to determine the chunk size that fits best. (Ed note, unclear which is first in this sequence below so presented in (our view of) logical order)

  • 1st level computes a similarity hash (56 bit not SHA1), which is used to determine a similarity level with any other currently stored data chunk in the system.
  • 2nd level uses a ZSTD compression algorithm. If a similarity is found, the new data chunk is compressed with the ZSTD compression algorithm and a reference dictionary used by the earlier, similar data chunk. If no existing chunk is similar to this one, the algorithm identifies a semi-unique reference dictionary that optimizes the compression of this data chunk. This semi-unique dictionary is stored as metadata.
  • 3rd level, If it turns out to be a complete duplicate data chunk, then the dedupe count for the original data chunk is incremented, a pointer is saved to the original unique data and the data discarded. If not a complete duplicate of other data, the system computes a delta from the closest “similar’ block and stores just the delta bytes, includes a pointer to the original similar block and increments a delta block counter.

So data is chunked, compressed with a optimized dictionary, be delta-diffed or deduped. All data reduction is done post data write (after the client is ACKed), and presumably, re-hydrated after being read from SSD media. VAST Data guarantees better data reduction for your stored data than any other storage solution.

New data protection

They also supply a unique Locally Decodable Erasure Coding with 4 parity (-like) blocks and anywhere from 36 (single enclosure leaving 4 spare u.2 SSDs) to 150 data blocks per stripe all of which support up to 4 device failures per stripe. 

The locally decodable erasure coding scheme allows for rebuilds without having to read all remaining data blocks in a stripe. In this scheme, once you read the 4 parity (-like) blocks, one has all the information calculated from up to ¾ of the remaining drives in the stripe, so the system only has to read the remaining ¼ drives in the stripe to reconstruct one, two, three, or four failing drives.  Given their data stripe width, this cuts down on the amount of data needing to be read considerably. Still with 150 data drives in a stripe, the system still has to read 38 drives worth of QLC SSD data to rebuild a data drive.

In addition to all the above, VAST Data also reblocks the data into much larger segments, (it writes 1MB segments to the QLC drives) and uses a heat map along with other heuristics to separate actively written data from less actively written data, thus reducing garbage collection, write amplification.

The podcast is a long and runs over ~43 minutes. Howard has always been great to talk with and if anything, now being a vendor, has intensified this tendency. Listen to the podcast to learn more.

Howard Marks, Technologist Extraordinary and Plenipotentiary, VAST Data, Inc.

Howard Marks brings over forty years of experience as a technology architect for hire and Industry observer to his role as VAST Data’s Technologist Extraordinary and Plienopotentary. In this role, Howard demystifies VAST’s technologies for customers and customer requirements for VAST’s engineers.

Before joining VAST, Howard ran DeepStorage an industry test lab and analyst firm. An award-winning speaker, he has appeared at events on three continents including Comdex, Interop and VMworld.

Howard is the author of several books (all gratefully out of print) and hundreds of articles since Bill Machrone taught him journalism at PC Magazine in the 1980s.

Listeners may also remember that Howard was a founding co-Host of the Greybeards-on-Storage Podcast.


83: GreyBeards talk NVMeoF/TCP with Muli Ben-Yehuda, Co-founder & CTO and Kam Eshghi, VP Strategy & Bus. Dev., Lightbits Labs

This is the first time we’ve talked with Muli Ben-Yehuda (@Muliby), Co-founder & CTO and Kam Eshghi (@KamEshghi), VP of Strategy & Business Development, Lightbits Labs. Keith and I first saw them at Dell Tech World 2019, in Vegas as they are a Dell Ventures funded organization. The company has 70 (mostly engineering) employees and is based in Israel, with offices in NY and the Valley as well as elsewhere around the world. Kam was previously with (Dell) EMC DSSD and Muli’s spent years as a Master Inventor with IBM Research.

[This was Keith Townsend’s (@CTOAdvisor & The CTO Advisor), first time as a GreyBeard co-host and we had a great time with him on the show.]

I would have to say it was a far ranging discussion but focused on their software defined, NVMeoF/TCP storage. As you may recall we talked with Solarflare Communications last year who were also working on a NVMeoF/TCP, only in their case it was an accelerator board. After the recording, Muli said the hardware accelerator they have is their own design.

Why NVMeoF/TCP?

Most NVMeoF today, that uses Ethernet, requires RoCE or iWARP compatible NICs and switches. Lightbits Labs has long been active in the NVMeoF/RoCE-iWARP market place. Early on they noticed that enterprise and cloud service providers were reluctant to adopt NVMeoF technology because of the need to change out all their networking equipment to use it. This is what brought about their focus on NVMeoF/TCP.

The advantage of NVMeoF/TCP is that it can be run on any Ethernet NIC and switch available today. From Muli’s perspective, NVMeoF/TCP is going to become the next SAN of choice for the data center. They were active, early on, in the standards committee to push for NVMeoF/TCP adoption.

How does it work?

Their software defined solution runs LightOS® storage software, a Linux based package, and uses off the shelf, server hardware with persistent storage (Optane DC PM/SSDs, NV DIMMs, V-NAND, etc.). They use persistent memory for a FAST write buffer and a place where they can “mold” the written data into something that can be better written to backend NVMe SSDs.

One surprise about Lightbits solution is that it offers a decent set of data services. These include erasure coding, thin provisioning, wire-speed inline compression, QoS and wide striping. It seems like any of these can be disabled by a customers want. But they only add very little overhead. I think Muli mentioned one Lightbits customer with encrypted data that disabled compression.

Lightbits also offers a global FTL (flash translation layer), which means they control SSD addressing which maps data to physical/raw NAND locations at the storage system level. If done well, a global FTL can help improve flash endurance and may offer better write performance (through increased parallelism).

Lightbits claim to inline, wire speed data compression is premised on the use of more current CPUs with high (>=28) core counts in a storage server. If the storage server has older CPUs (<28 cores), they suggest you install their LightField™ hardware accelerator add in card. LightField offers a number of hardware based, performance accelerations in addition to compression speedups.

LightOS requires no host (client) software. Muli’s a long time Linux kernel contributor and indicated that the only thing LightOS needs is a current Linux Kernel (5.0 or later) which has the NVMeoF/TCP driver software (and persistent memory). Lightbits believes that it’s only a matter of time until other OSs also implement NVMeoF/TCP drivers.

Lightbits business considerations

Long term, Lightbits sees a need for compute-storage disaggregation in hyper scalar and enterprise cloud environments. Early on it was relatively easy to replicate servers with DAS storage but as NVMe SSDs came out the expense to do this throughout their >>1000 server environment starts to become exorbitant. If they only had an easy way to disaggregate their storage from compute and still enjoy all the performance advantages of DAS NVMe SSDS. With LightOS they can do that.

Lightbits can be sold today through Dell, as a partner solution, which means that Dell can integrate, test and validate their servers with LightField accelerator card and deliver that package to your data center. I believe you still need to purchase and install their LightOS software yourself.

Lightbits charges for LightOS software on a per storage node basis, but they have different charges based on the maximum number of NVMe SSD slots available is in a server. There is no capacity charge. They also offer worldwide service and support for LightOS software and LightField hardware.

It’s all about performance

From a performance perspective, one Fortune 500 hyper-scalar benchmarked their storage solution against a DAS NVMe server and found it added about 30 µsec to the IO latency as compare to DAS NVMe SSDs. From their perspective, the added data services, better endurance, and disaggregated compute-storage environment provided by LightOS more than made up for the additional overhead.

Finally, I asked about whether multiple LightOS storage servers could be clustered together. Muli intervened, after stating some legal stuff, said they were working on the next generation LightOS and it will support clustered storage servers, local data replication as well as distributed (across storage servers) erasure coding.

The podcast is a long one and runs over ~47 minutes. There was a lot to talk about and Kam and Muli seem to know it all. It was interesting to hear the history of their pivot to TCP. They seem to have the right technology to address the market. Listen to the podcast to learn more.

Muli Ben-Yehuda, Co-founder and CTO, Lightbits Labs

Muli Ben-Yehuda is the CTO and Co-Founder of Lightbits Labs, where he leads technological developments.

Prior to founding Lightbits, he was chief scientist at Stratoscale and a researcher and Master Inventor at IBM Research.

He holds an M.Sc. in Computer Science (summa cum laude) from the Technion — Israel Institute of Technology and a B.A. (cum laude) from the Open University of Israel.

He is a long time Linux kernel contributor and his code and ideas are most likely included in an operating system or hypervisor running near you. He is also one of the authors of the NVMe/TCP standard and technology. 

Kam Eshghi, VP Strategy & Business Development, Lightbits Labs

Kam joined Lightbits Labs from Dell EMC and has over 20yrs of experience in strategic marketing and business development with startups and public companies.

Most recently as VP of strategic alliances at startup DSSD, Kam led business development with technology partners and developed DSSD’s partnership with EMC, leading to EMC’s acquisition of DSSD.

Previously as Sr. Director of Marketing & Business Development at IDT, Kam built their NVMe Controller business from scratch. Previous to that, Kam worked in data center storage, compute and networking markets at HP, Intel, and Crosslayer Networks. 

Kam is a U.C. Berkeley and MIT graduate with a BS and MS in Electrical Engineering and Computer Science and an MBA.

82: GreyBeards talk composable infrastructure with Sumit Puri, CEO & Co-founder, Liqid Inc.

This is the first time we’ve had Sumit Puri, CEO & GM Co-founder of Liqid on the show but both Greg and I have talked with Liqid in the past. Given that we talked with another composable infrastructure company (see our DriveScale podcast), we thought it would be nice to hear from their  competition.

We started with a brief discussion of the differences between them and DriveScale. Sumit mentioned that they were mainly focused on storage and not as much on the other components of composable infrastructure.

[This was Greg Schulz’s (@storageIO & StorageIO.com), first time as a GreyBeard co-host and we had some technical problems with his feed, sorry about that.]

Multi-fabric composable infrastructure

At Dell Tech World (DTW) 2019 last week, Liqid announced a new, multi-fabric composability solution. Originally, Liqid composable infrastructure only supported PCIe switching, but with their new announcement, they also now support Ethernet and InfiniBand infrastructure composability. In their multi-fabric solution, they offer JBoG(PUs) which can attach to Ethernet/InfiniBand as well as other compute accelerators such as FPGAs or AI specific compute engines.

For non-PCIe switch fabrics, Liqid adds an “HBA-like” board in the server side that converts PCIe protocols to Ethernet or InfiniBand and has another HBA-like board sitting in the JBoG.

As such, if you were a Media & Entertainment (M&E) shop, you could be doing 4K real time editing during the day, where GPUs were each assigned to a separate servers running editing apps and at night, move all those GPUs to a central server where they could now be used to do rendering or transcoding. All with the same GPU-sever hardware andusing Liqid to re-assign those GPUs, back and forth during day and night shifts.  

Even before the multi-fabric option Liqid supported composing NVMe SSDS and servers. So with a 1U server which in the package may support 4 SSDS, with Liqid you could assign 24-48 or whatever number made the most sense  to that 1U server for a specialized IO intensive activity. When that activity/app was done, you could then allocate those NVMe SSDs to other servers to support other apps.

Why compose infrastructure

The promise of composability is no more isolated/siloed/dedicated hardware in your environment. Resources like SSDs, GPUS, FPGAs and really servers can be torn apart and put back together without sending out a service technician and waiting for hours while they power down your system and move hardware around. I asked Sumit how long it took to re-configure (compose) hardware into a new congfiguration and he said it was a matter of 20 seconds.

Sumit was at an NVIDIA show recently and said that Liqid could non-disruptively swap out GPUs. For this you would just isolate the GPU from any server and then go over to the JBoG and take the GPU out of the cabinet.

How does it work

Sumit mentioned that they have support for Optane SSDs to be used as DRAM memory (not Optane DC PM) using IMDT (Intel Memory Drive Technology). In this way you can extend your DRAM up to 6TB for a server. And with Liqid it could be concentrated on one server one minute and then spread across dozens the next.

I asked Sumit about the overhead of the fabrics that can be used with Liqid. He said that the PCIe switching may add on the order of 100 nanoseconds and the Ethernet/InfiniBand networks on the order of 10-15 microseconds or roughly 2 orders of magnitude difference in overhead between the two fabrics.

Sumit made a point of saying that Liqid is a software company. Liqid software runs on switch hardware (currently Mellanox Ethernet/InfiniBand switches) or their PCIe switches.

But given their solution can require HBAs, JBoGs and potentially PCIe switches there’s at least some hardware involved. But for Ethernet and InfiniBand their software runs in the Mellanox switch gear. Liqid control software has a CLI, GUI and supports an API.

Liqid supports any style of GPU (NVIDIA, AMD or ?). And as far as they were concerned, anything that could be plugged into a PCIe bus was fair game to be disaggregated and become composable.

Solutions using Liqid

Their solution is available from a number of vendors. And at last week’s, DTW 2019 Liqid announced a new OEM partnership with Dell EMC. So now, you can purchase composable infrastructure, directly from Dell. Liqid’s route to market is through their partner ecosystem and Dell EMC is only the latest.

Sumit mentioned a number of packaged solutions and one that sticks in my mind was a an AI appliance pod solution (sold by Dell), that uses Liqid to compose an training data ingestion environment at one time, a data cleaning/engineering environment at another time, a AI deep learning/model training environment at another time, and then an scaleable inferencing engine after that. Something that can conceivably do it all, an almost all in one AI appliance.

Sumit said that these types of solutions would be delivered in 1/4, 1/2, or full racks and with multi-fabric could span racks of data center infrastructure. The customer ultimately gets to configure these systems with whatever hardware they want to deploy, JBoGs, JBoFs, JBoFPGAs, JBoAIengines, etc.

The podcast runs ~42 minutes. Sumit was very knowledgeable data center infrastructure and how composability could solve many of the problems of today. Some composability use cases he mentioned could apply to just about any data center. Ray and Sumit had a good conversation about the technology. Both Greg and I felt Liqid’s technology represented the next step in data center infrastructure evolution. Listen to the podcast to learn more.

Sumit Perl, CEO & Co-founder, Liqid, Inc.

Sumit Puri is CEO and Co-founder at Liqid. An industry veteran with over 20 years of experience, Sumit has been focused on defining the technology roadmaps for key industry leaders including Avago, SandForce, LSI, and Toshiba.

Sumit has a long history with bringing successful products to market with numerous teams and large-scale organizations.