No-power sensors surface due to computational energy efficiency trends

Koomeys_law_graph,_made_by_Koomey (cc) (from wikipedia.org)
Koomeys_law_graph,_made_by_Koomey (cc) (from wikipedia.org)

Read an article The computing trend that will change everything in MIT’s TechReview today  about the trend in energy consumption per unit of computation.

Along with Moore’s law dictating that  transister density doubles every 18 to 24 months, there is Koomey’s law that states that computational power efficiency or computations per watt, will double every 1.57 yrs.

Koomey’s law has made today’s smart phones and tablets possible.  If your current laptop were computing at the power efficiency of 1991 computers their batteries would last ~2.5 seconds.

No-power sensors?!

But this computing efficiency trend is giving rise to no-power sensors/devices, or computational sensors without batteries.  These new sensors gather electrical energy from “ambient radio waves” in the air, and by doing so harvest enough electricity to power computations and as such, don’t need batteries.

Such devices can gather ~50μwatts of power from a TV transmitter just 2.5 miles away.  Most calculators only use ~5μwatts and digital thermoters around 1μwatt, so 50 is enough to do some reasonable amounts of sensing work.

But the exciting part is that as Koomley’s law continues, the amount of work that 50μwatts or even 5μwatts supports doubles again every 1.6 years.  For example, the computational power of today’s laptops will only consume infinitesimal amounts of power in ~two decades time.  Thus, no-power-sensors of 2034 will be very smart indeed.

“Any sufficiently advanced technology is indistinguishable from magic”, Arthur C. Clarke

Data transmission efficiency not keeping up

Nonetheless, the fact that computational efficiency is doubling every 1.6 years doesn’t mean the data transmission efficiency is doing the same.  Which means that for the foreseeable future, data transmission may remain a crucial bottleneck for no-power sensors.

However, computational increases can somewhat compensate for data transmission limitations by more efficient encoding, compression, etc. But there are limits as to what can be accomplished within any data transmission technology.

Nanodata

Thus, for the foreseeable future, although sensors will be able to do lots more computations, what they transmit to the outside world may remain limited.  Giving rise to smart, no-power sensors providing very miniscule data packages.

One term coined to describe such limited external data transmission from no-power computationally intense sensors is nanodata.   Because of their ability to exist outside the power grid, it is very likely that the future sensor cloud or internet-of-things will be primarily comprised of such nanodata devices.

~~~~
I was at SNW last week and there was some discussion of “little data” or data in corporate databases, in contrast with big data.  But nanodata is something I had never heard of before today.

So now we have big data, little data, and nanodata.  Seems like are missing a few steps here…

The sensor cloud comes home

We thought the advent of smart power meters would be the killer app for building the sensor cloud in the home.  But, this week Honeywell announced a new smart thermostat that attaches to the Internet and uses Opower’s cloud service to record and analyze home heating and cooling demand.  Looks to be an even better bet.

9/11 Memorial renderings, aerial view (c) 9/11 Memorial.org (from their website)
9/11 Memorial renderings, aerial view (c) 9/11 Memorial.org (from their website)

Just this past week, on a NPR NOVA telecast: Engineering Ground Zero on building the 9/11 memorial in NYC, it was mentioned that all the trees planted in the memorial had individual sensors to measure soil chemistry, dampness, and other tree health indicators. Yes, even trees are getting on the sensor cloud.

And of course the buildings going up at Ground Zero are all smart buildings as well, containing sensors embedded in the structure, the infrastructure, and anywhere else that matters.

But what does this mean in terms of data

Data requirements will explode as the smart home and other sensor clouds build out.  For example, even if a smart thermostat only issues a message every 15 minutes and the message is only 256 bytes, the data from the 130 million households in the US alone would be an additional ~3.2TB/day.  And that’s just one sensor per household.

If you add the smart power meter, lawn sensor, intrusion/fire/chemical sensor, and god forbid, the refrigerator and freezer product sensors to the mix that’s another another 16TB/day of incoming data.

And that’s just assuming a 256 byte payload per sensor every 15 minutes.  The intrusion sensors could easily be a combination of multiple, real time exterior video feeds as well as multi-point intrusion/motion/fire/chemical sensors which would generate much, much more data.

But we have smart roads/bridges, smart cars/trucks, smart skyscrapers, smart port facilities, smart railroads, smart boats/ferries, etc. to come.   I could go on but the list seems long enouch already.  Each of these could generate another ~19TB/day data stream, if not more.  Some of these infrastructure entities/devices are much more complex than a house and there are a lot more cars on the road than houses in the US.

It’s great to be in the (cloud) storage business

All that data has to be stored somewhere and that place is going to be the cloud.  The Honeywell smart thermostat uses Opower’s cloud storage and computing infrastructure specifically designed to support better power management for heating and cooling the home.  Following this approach, it’s certainly feasible that more cloud services would come online to support each of the smart entities discussed above.

Naturally, using this data to provide real time understanding of the infrastructure they monitor will require big data analytics. Hadoop, and it’s counterparts are the only platforms around today that are up to this task.

—-

So cloud computing, cloud storage, and big data analytics have yet another part to play. This time in the upcoming sensor cloud that will envelope the world and all of it’s infrastructure.

Welcome to the future, it’s almost here already.

Comments?