Why EMC is doing Project Lightening and Thunder

Picture of atmospheric lightening striking ground near a building at night

rayo 3 by El Garza (cc) (from Flickr)

Although technically Project Lightening and Thunder represent some interesting offshoots of EMC software, hardware and system prowess,  I wonder why they would decide to go after this particular market space.

There are plenty of alternative offerings in the PCIe NAND memory card space.  Moreover, the PCIe card caching functionality, while interesting is not that hard to replicate and such software capability is not a serious barrier of entry for HP, IBM, NetApp and many, many others.  And the margins cannot be that great.

So why get into this low margin business?

I can see a couple of reasons why EMC might want to do this.

  • Believing in the commoditization of storage performance.  I have had this debate with a number of analysts over the years but there remain many out there that firmly believe that storage performance will become a commodity sooner, rather than later.  By entering the PCIe NAND card IO buffer space, EMC can create a beachhead in this movement that helps them build market awareness, higher manufacturing volumes, and support expertise.  As such, when the inevitable happens and high margins for enterprise storage start to deteriorate, EMC will be able to capitalize on this hard won, operational effectiveness.
  • Moving up the IO stack.  From an applications IO request to the disk device that actually services it is a long journey with multiple places to make money.  Currently, EMC has a significant share of everything that happens after the fabric switch whether it is FC,  iSCSI, NFS or CIFS.  What they don’t have is a significant share in the switch infrastructure or anywhere on the other (host side) of that interface stack.  Yes they have Avamar, Networker, Documentum, and other software that help manage, secure and protect IO activity together with other significant investments in RSA and VMware.   But these represent adjacent market spaces rather than primary IO stack endeavors.  Lightening represents a hybrid software/hardware solution that moves EMC up the IO stack to inside the server.  As such, it represents yet another opportunity to profit from all the IO going on in the data center.
  • Making big data more effective.  The fact that Hadoop doesn’t really need or use high end storage has not been lost to most storage vendors.  With Lightening, EMC has a storage enhancement offering that can readily improve  Hadoop cluster processing.  Something like Lightening’s caching software could easily be tailored to enhance HDFS file access mode and thus, speed up cluster processing.  If Hadoop and big data are to be the next big consumer of storage, then speeding cluster processing will certainly help and profiting by doing this only makes sense.
  • Believing that SSDs will transform storage. To many of us the age of disks is waning.  SSDs, in some form or another, will be the underlying technology for the next age of storage.  The densities, performance and energy efficiency of current NAND based SSD technology are commendable but they will only get better over time.  The capabilities brought about by such technology will certainly transform the storage industry as we know it, if they haven’t already.  But where SSD technology actually emerges is still being played out in the market place.  Many believe that when industry transitions like this happen it’s best to be engaged everywhere change is likely to happen, hoping that at least some of them will succeed. Perhaps PCIe SSD cards may not take over all server IO activity but if it does, not being there or being late will certainly hurt a company’s chances to profit from it.

There may be more reasons I missed here but these seem to be the main ones.  Of the above, I think the last one, SSD rules the next transition is most important to EMC.

They have been successful in the past during other industry transitions.  If anything they have shown similar indications with their acquisitions by buying into transitions if they don’t own them, witness Data Domain, RSA, and VMware.  So I suspect the view in EMC is that doubling down on SSDs will enable them to ride out the next storm and be in a profitable place for the next change, whatever that might be.

And following lightening, Project Thunder

Similarly, Project Thunder seems to represent EMC doubling their bet yet again on the SSDs.  Just about every month I talk to another storage startup coming out in the market providing another new take on storage using every form of SSD imaginable.

However, Project Thunder as envisioned today is not storage, but rather some form of external shared memory.  I have heard this before, in the IBM mainframe space about 15-20 years ago.  At that time shared external memory was going to handle all mainframe IO processing and the only storage left was going to be bulk archive or migration storage – a big threat to the non-IBM mainframe storage vendors at the time.

One problem then was that the shared DRAM memory of the time was way more expensive than sophisticated disk storage and the price wasn’t coming down fast enough to counteract increased demand.  The other problem was making shared memory work with all the existing mainframe applications was not easy.  IBM at least had control over the OS, HW and most of the larger applications at the time.  Yet they still struggled to make it usable and effective, probably some lesson here for EMC.

Fast forward 20 years and NAND based SSDs are the right hardware technology to make  inexpensive shared memory happen.  In addition, the road map for NAND and other SSD technologies looks poised to continue the capacity increase and price reductions necessary to compete effectively with disk in the long run.

However, the challenges then and now seem as much to do with software that makes shared external memory universally effective as with the hardware technology to implement it.  Providing a new storage tier in Linux, Windows and/or VMware is easier said than done. Most recent successes have usually been offshoots of SCSI (iSCSI, FCoE, etc).  Nevertheless, if it was good for mainframes then, it certainly good for Linux, Windows and VMware today.

And that seems to be where Thunder is heading, I think.

Comments?

 

Comments?

This entry was posted in Data efficiency, Distributed computing, Market dynamics, Scenario planning, SSD storage, Storage performance, Strategic Inflection Points, Strategic planning, System effectiveness, Visionary leadershp and tagged , , , , , , , , , , , , , . Bookmark the permalink.