Is AGI just a question of scale now – AGI part-5

Read two articles over the past month or so. The more recent one was an Economist article (AI enters the industrial age, paywall) and the other was A generalist agent (from Deepmind). The Deepmind article was all about the training of Gato, a new transformer deep learning model trained to perform well on 600 separate task arenas from image captioning, to Atari games, to robotic pick and place tasks.

And then there was this one tweet from Nando De Frietas, research director at Deepmind:

Someone’s opinion article. My opinion: It’s all about scale now! The Game is Over! It’s about making these models bigger, safer, compute efficient, faster at sampling, smarter memory, more modalities, INNOVATIVE DATA, on/offline, … 1/N

I take this to mean that AGI is just a matter of more scale. Deepmind and others see the way to attain AGI is just a matter of throwing more servers, GPUs and data at the training the model.

We have discussed AGI in the past (see part-0 [ish], part-1 [ish], part-2 [ish], part-3ish and part-4 blog posts [We apologize, only started numbering them at 3ish]). But this tweet is possibly the first time we have someone in the know, saying they see a way to attain AGI.

Transformer models

It’s instructive from my perspective that, Gato is a deep learning transformer model. Also the other big NLP models have all been transformer models as well.

Gato (from Deepmind), SWITCH Transformer (from Google), GPT-3/GPT-J (from OpenAI), OPT (from meta), and Wu Dai 2.0 (from China’s latest supercomputer) are all trained on more and more text and image data scraped from the web, wikipedia and other databases.

Wikipedia says transformer models are an outgrowth of RNN and LSTM models that use attention vectors on text. Attention vectors encode, into a vector (matrix), all textual symbols (words) prior to the latest textual symbol. Each new symbol encountered creates another vector with all prior symbols plus the latest word. These vectors would then be used to train RNN models using all vectors to generate output.

The problem with RNN and LSTM models is that it’s impossible to parallelize. You always need to wait until you have encountered all symbols in a text component (sentence, paragraph, document) before you can begin to train.

Instead of encoding this attention vectors as it encounters each symbol, transformer models encode all symbols at the same time, in parallel and then feed these vectors into a DNN to assign attention weights to each symbol vector. This allows for complete parallelism which also reduced the computational load and the elapsed time to train transformer models.

And transformer models allowed for a large increase in DNN parameters (I read these as DNN nodes per layer X number of layers in a model). GATO has 1.2B parameters, GPT-3 has 175B parameters, and SWITCH Transformer is reported to have 7X more parameters than GPT-3 .

Estimates for how much it cost to train GPT-3 range anywhere from $10M-20M USD.

AGI will be here in 10 to 20 yrs at this rate

So if it takes ~$15M to train a 175B transformer model and Google has already done SWITCH which has 7-10X (~1.5T) the number of GPT-3 parameters. It seems to be an arms race.

If we assume it costs ~$65M (~2X efficiency gain since GPT-3 training) to train SWITCH, we can create some bounds as to how much it will cost to train an AGI model.

By the way, the number of synapses in the human brain is approximately 1000T (See Basic NN of the brain, …). If we assume that DNN nodes are equivalent to human synapses (a BIG IF), we probably need to get to over 1000T parameter model before we reach true AGI.

So my guess is that any AGI model lies somewhere between 650X to 6,500X parameters beyond SWITCH or between 1.5Q to 15Q model parameters.

If we assume current technology to do the training this would cost $40B to $400B to train. Of course, GPUs are not standing still and NVIDIA’s Hopper (introduced in 2022) is at least 2.5X faster than their previous gen, A100 GPU (introduced in 2020). So if we waited a 10 years, or so we might be able to reduce this cost by a factor of 100X and in 20 years, maybe by 10,000X, or back to where roughly where SWITCH is today.

So in the next 20 years most large tech firms should be able to create their own AGI models. In the next 10 years most governments should be able to train their own AGI models. And as of today, a select few world powers could train one, if they wanted to.

Where they get the additional data to train these models (I assume that data counts would go up linearly with parameter counts) may be another concern. However, I’m sure if you’re willing to spend $40B on AGI model training, spending a few $B more on data acquisition shouldn’t be a problem.

~~~~

At the end of the Deepmind article on Gato, it talks about the need for AGI safety in terms of developing preference learning, uncertainty modeling and value alignment. The footnote for this idea is the book, Human Compatible (AI) by S. Russell.

Preference learning is a mechanism for AGI to learn the “true” preference of a task it’s been given. For instance, if given the task to create toothpicks, it should realize the true preference is to not destroy the world in the process of making toothpicks.

Uncertainty modeling seems to be about having AI assume it doesn’t really understand what the task at hand truly is. This way there’s some sort of (AGI) humility when it comes to any task. Such that the AGI model would be willing to be turned off, if it’s doing something wrong. And that decision is made by humans.

Deepmind has an earlier paper on value alignment. But I see this as the ability of AGI to model human universal values (if such a thing exists) such as the sanctity of human life, the need for the sustainability of the planet’s ecosystem, all humans are created equal, all humans have the right to life, liberty and the pursuit of happiness, etc.

I can see a future post is needed soon on Human Compatible (AI).

Photo Credit(s):

For AGI, is reward enough – part 4

Last May, an article came out of DeepMind research titled Reward is enough. It was published in an artificial intelligence journal but PDFs of it are available free of charge.

The article points out that according to DeepMind researchers, using reinforcement learning and an appropriate reward signal is sufficient to attain AGI (artificial general intelligence). We have written about the perils and pitfalls of AGI before (see Existential event risks [-part-0]NVIDIA Triton GMI, a step to far[-part-1]The Myth of AGI [-part-2], and Towards a better AGI – part 3ish. (Sorry, I only started numbering them after part 3ish).

My last post on AGI inclined towards the belief that AGI was not possible without combining deduction, induction and abduction (probabilistic reasoning) together and that any such AGI was a distant dream at best.

Then I read the Reward is Enough article and it implied that they saw a realistic roadmap towards achieving AGI based solely on reward signals and Reinforcement Learning (wikipedia article on Reinforcement Learning ). To read the article was disheartening at best. After the article came out, I made it a hobby to understand everything I could about Reinforcement Learning to understand whether what they are talking is feasible or not.

Reinforcement learning, explained

Let’s just say that the text book, Reinforcement Learning, is not the easiest read I’ve seen. But I gave it a shot and although I’m no where near finished, (lost somewhere in chapter 4), I’ve come away with a better appreciation of reinforcement learning.

The premise of Reinforcement Learning, as I understand it, is to construct a program that performs a sequence of steps based on state or environment the program is working on, records that sequence and tags or values that sequence with a reward signal (i.e., +1 for good job, -1 for bad, etc.). Depending on whether the steps are finite, i.,e, always ends or infinite, never ends, the reward tagging could be cumulative (finite steps) or discounted (infinite steps).

The record of the program’s sequence of steps would include the state or the environment and the next step that was taken. Doing this until the program completes the task or if, infinite, whenever the discounted reward signal is minuscule enough to not matter anymore.

Once you have a log or record of the state, the step taken in that state and the reward for that step you have a policy used to take better steps. Over time, with sufficient state-step-reward sequences, one can build a policy that would work’s very well for the problem at hand.

Reinforcement learning, a chess playing example

Let’s say you want to create a chess playing program using reinforcement learning. If a sequence of moves ends the game, you can tag each move in that sequence with a reward (say +1 for wins, 0 for draws and -1 for losing), perhaps discounted by the number of moves it took to win. The “sequence of steps” would include the game board and the move chosen by the program for that board position.

Figure 2: Comparison with specialized programs. (A) Tournament evaluation of AlphaZero in chess, shogi, and Go in matches against respectively Stockfish, Elmo, and the previously published version of AlphaGo Zero (AG0) that was trained for 3 days. In the top bar, AlphaZero plays white; in the bottom bar AlphaZero plays black. Each bar shows the results from AlphaZero’s perspective: win (‘W’, green), draw (‘D’, grey), loss (‘L’, red). (B) Scalability of AlphaZero with thinking time, compared to Stockfish and Elmo. Stockfish and Elmo always receive full time (3 hours per game plus 15 seconds per move), time for AlphaZero is scaled down as indicated. (C) Extra evaluations of AlphaZero in chess against the most recent version of Stockfish at the time of writing, and against Stockfish with a strong opening book. Extra evaluations of AlphaZero in shogi were carried out against another strong shogi program Aperyqhapaq at full time controls and against Elmo under 2017 CSA world championship time controls (10 minutes per game plus 10 seconds per move). (D) Average result of chess matches starting from different opening positions: either common human positions, or the 2016 TCEC world championship opening positions . Average result of shogi matches starting from common human positions . CSA world
championship games start from the initial board position.

If your policy incorporates enough winning chess move sequences and the program encounters one of these in a game and if move recorded won, select that move, if lost, select another valid move at random. If the program runs across a board position its never seen before, choose a valid move at random.

Do this enough times and you can build a winning white playing chess policy. Doing something similar for black playing program would build a winning black playing chess policy.

The researchers at DeepMind explain their AlphaZero program which plays chess, shogi, and Go in another research article, A general reinforcement learning algorithm that masters chess, shogi and Go through self-play.

Reinforcement learning and AGI

So now what does all that have to do with creating AGI. The premise of the paper is that by using rewards and reinforcement learning, one could program a policy for any domain that one encounters in the world.

For example, using the above chart, if we were to construct reinforcement learning programs that mimicked perception (object classification/detection) abilities, memory ((image/verbal/emotional/?) abilities, motor control abilities, etc. Each subsystem could be trained to solve the arena needed. And over time, if we built up enough of these subsystems one could somehow construct an AGI system of subsystems, that would match human levels of intelligence.

The paper’s main hypothesis is “(Reward is enough) Intelligence, and its associated abilities, can be understood as subserving the maximization of reward by an agent acting in its environment.”

Given where I am today, I agree with the hypothesis. But the crux of the problem is in the details. Yes, for a game of multiple players and where a reward signal of some type can be computed, a reinforcement learning program can be crafted that plays better than any human but this is only because one can create programs that can play that game, one can create programs that understand whether the game is won or lost and use all this to improve the game playing policy over time and game iterations.

Does rewards and reinforcement learning provide a roadmap to AGI

To use reinforcement learning to achieve AGI implies that

  • One can identify all the arenas required for (human) intelligence
  • One can compute a proper reward signal for each arena involved in (human) intelligence,
  • One can programmatically compute appropriate steps to take to solve that arena’s activity,
  • One can save a sequence of state-steps taken to solve that arena’s problem, and
  • One can run sequences of steps enough times to produce a good policy for that arena.

There are a number of potential difficulties in the above. For instance, what’s the state the program operates in.

For a human, which has 500K(?) pressure, pain, cold, & heat sensors throughout the exterior and interior of the body, two eyes, ears, & nostrils, one tongue, two balance sensors, tired, anxious, hunger, sadness, happiness, and pleasure signals, and 600 muscles actuating the position of five fingers/hand, toes/foot, two eyes ears, feet, legs, hands, and arms, one head and torso. Such a “body state, becomes quite complex. Any state that records all this would be quite large. Ok it’s just data, just throw more storage at the problem – my kind of problem.

The compute power to create good policies for each subsystem would also be substantial and in the end determining the correct reward signal would be non-trivial for each and every subsystem. Yet, all it takes is money, time and effort and all this could be accomplished.

So, yes, given all the above creating an AGI, that matches human levels of intelligence, using reinforcement learning techniques and rewards is certainly possible. But given all the state information, action possibilities and reward signals inherent in a human interacting in the world today, any human level AGI, would seem unfeasible in the next year or so.

One item of interest, recent DeepMind researchers have create MuZero which learns how to play Go, Chess, Shogi and Atari games without any pre-programmed knowledge of the games (that is how to play the game, how to determine if the game is won or lost, etc.). It managed to come up with it’s own internal reward signal for each game and determined what the proper moves were for each game. This seemed to combine a deep learning neural network together with reinforcement learning techniques to craft a rewards signal and valid move policies.

Alternatives to full AGI

But who says you need AGI, for something that might be a useful to us. Let’s say you just want to construct an intelligent oracle that understood all human generated knowledge and science and could answer any question posed to it. With the only response capabilities being audio, video, images and text.

Even an intelligent oracle such as the above would need an extremely large state. Such a state would include all human and machine generated information at some point in time. And any reward signal needed to generate a good oracle policy would need to be very sophisticated, it would need to determine whether the oracle’s answer; was good or not. And of course the steps to take to answer a query are uncountable, 1st there’s understanding the query, next searching out and examining every piece of information in the state space for relevance, and finally using all that information to answer to the question.

I’m probably missing a few steps in the above, and it almost makes creating a human level AGI seem easier.

Perhaps the MuZero techniques might have an answer to some or all of the above.

~~~~

Yes, reinforcement learning is a valid roadmap to achieving AGI, but can it be done today – no. Tomorrow, perhaps.

Photo credit(s):

New era of graphical AI is near #AIFD2 @Intel

I attended AIFD2 ( videos of their sessions available here) a couple of weeks back and for the last session, Intel presented information on what they had been working on for new graphical optimized cores and a partner they have, called Katana Graph, which supports a highly optimized graphical analytics processing tool set using latest generation Xeon compute and Optane PMEM.

What’s so special about graphs

The challenges with graphical processing is that it’s nothing like standard 2D tables/images or 3D oriented data sets. It’s essentially a non-Euclidean data space that has nodes with edges that connect them.

But graphs are everywhere we look today, for instance, “friend” connection graphs, “terrorist” networks, page rank algorithms, drug impacts on biochemical pathways, cut points (single points of failure in networks or electrical grids), and of course optimized routing.

The challenge is that large graphs aren’t easily processed with standard scale up or scale out architectures. Part of this is that graphs are very sparse, one node could point to one other node or to millions. Due to this sparsity, standard data caching fetch logic (such as fetching everything adjacent to a memory request) and standardized vector processing (same instructions applied to data in sequence) don’t work very well at all. Also standard compute branch prediction logic doesn’t work. (Not sure why but apparently branching for graph processing depends more on data at the node or in the edge connecting nodes).

Intel talked about a new compute core they’ve been working on, which was was in response to a DARPA funded activity to speed up graphical processing and activities 1000X over current CPU/GPU hardware capabilities.

Intel presented on their PIUMA core technology was also described in a 2020 research paper (Programmable Integrated and Unified Memory Architecture) and YouTube video (Programmable Unified Memory Architecture).

Intel’s PIUMA Technology

DARPA’s goals became public in 2017 and described their Hierarchical Identity Verify Exploit (HIVE) architecture. HIVE is DOD’s description of a graphical analytics processor and is a multi-institutional initiative to speed up graphical processing. .

Intel PIUMA cores come with a multitude of 64-bit RISC processor pipelines with a global (shared) address space, memory and network interfaces that are optimized for 8 byte data transfers, a (globally addressed) scratchpad memory and an offload engine for common operations like scatter/gather memory access.

Each multi-thread PIUMA core has a set of instruction caches, small data caches and register files to support each thread (pipeline) in execution. And a PIUMA core has a number of multi-thread cores that are connected together.

PIUMA cores are optimized for TTEPS (Tera-Traversed Edges Per Second) and attempt to balance IO, memory and compute for graphical activities. PIUMA multi-thread cores are tied together into (completely connected) clique into a tile, multiple tiles are connected within a single node and multiple nodes are tied together with a 8 byte transfer optimized network into a PIUMA system.

P[I]UMA (labeled PUMA in the video) multi-thread cores apparently eschew extensive data and instruction caching to focus on creating a large number of relatively simple cores, that can process a multitude of threads at the same time. Most of these threads will be waiting on memory, so the more threads executing, the less likely that whole pipeline will need to be idle, and hopefully the more processing speedup can result.

Performance of P[I]UMA architecture vs. a standard Xeon compute architecture on graphical analytics and other graph oriented tasks were simulated with some results presented below.

Simulated speedup for a single node with P[I]UMAtechnology vs. Xeon range anywhere from 3.1x to 279x and depends on the amount of computation required at each node (or edge). (Intel saw no speedups between a single Xeon node and multiple Xeon Nodes, so the speedup results for 16 P[I]UMA nodes was 16X a single P[I]UMA node).

Having a global address space across all PIUMA nodes in a system is pretty impressive. We guess this is intrinsic to their (large) graph processing performance and is dependent on their use of photonics HyperX networking between nodes for low latency, small (8 byte) data access.

Katana Graph software

Another part of Intel’s session at AIFD2 was on their partnership with Katana Graph, a scale out graph analytics software provider. Katana Graph can take advantage of ubiquitous Xeon compute and Optane PMEM to speed up and scale-out graph processing. Katana Graph uses Intel’s oneAPI.

Katana graph is architected to support some of the largest graphs around. They tested it with the WDC12 web data commons 2012 page crawl with 3.5B nodes (pages) and 128B connections (links) between nodes.

Katana runs on AWS, Azure, GCP hyperscaler environment as well as on prem and can scale up to 256 systems.

Katana Graph performance results for Graph Neural Networks (GNNs) is shown below. GNNs are similar to AI/ML/DL CNNs but use graphical data rather than images. One can take a graph and reduce (convolute) and summarize segments to classify them. Moreover, GNNs can be used to understand whether two nodes are connected and whether two (sub)graphs are equivalent/similar.

In addition to GNNs, Katana Graph supports Graph Transformer Networks (GTNs) which can analyze meta paths within a larger, heterogeneous graph. The challenge with large graphs (say friend/terrorist networks) is that there are a large number of distinct sub-graphs within the graph. GTNs can break heterogenous graphs into sub- or meta-graphs, which can then be used to understand these relationships at smaller scales.

At AIFD2, Intel also presented an update on their Analytics Zoo, which is Intel’s MLops framework. But that will need to wait for another time.

~~~~

It was sort of a revelation to me that graphical data was not amenable to normal compute core processing using today’s GPUs or CPUs. DARPA (and Intel) saw this defect as a need for a completely different, brand new compute architecture.

Even so, Intel’s partnership with Katana Graph says that even today compute environment could provide higher performance on graphical data with suitable optimizations.

It would be interesting to see what Katana Graph could do using PIUMA technology and appropriate optimizations.

In any case, we shouldn’t need to wait long, Intel indicated in the video that P[I]UMA Technology chips could be here within the next year or so.

Comments?

Photo Credit(s):

  • From Intel’s AIFD2 presentations
  • From Intel’s PUMA you tube video

Towards a better AGI – part 3(ish)

Read an article this past week in Nature about the need for Cooperative AI (Cooperative AI: machines must learn to find common ground) which supplies the best view I’ve seen as to a direction research needs to go to develop a more beneficial and benign AI-AGI.

Not sure why, but this past month or so, I’ve been on an AGI fueled frenzy (at leastihere). I didn’t realize this was going to be a multi-part journey otherwise, I would have lableled them AGI part-1 & -2 ( please see: Existential event risks [part-0], NVIDIA Triton GMI, a step to far [part-1] and The Myth of AGI [part-2] to learn more).

But first please take our new poll:

The Nature article puts into perspective what we all want from future AI (or AGI). That is,

  • AI-AI cooperation: AI systems that cooperate with one another while at the same time understand that not all activities are zero sum competitions (like chess, go, Atari games) but rather most activities, within the human sphere, are cooperative activities where one agent has a set of goals and a different agent has another set of goals, some of which overlap while others are in conflict. Sport games like soccer lacrosse come to mind. But there are other card and (Risk & Diplomacy) board games that use cooperating parties, with diverse goals to achieve common ends.
  • AI-Human cooperation: AI systems that cooperate with humans to achieve common goals. Here too, most humans have their own sets of goals, some of which may be in conflict with the AI systems goals. However, all humans have a shared set of goals, preservation of life comes to mind. It’s in this arena where the challenges are most acute for AI systems. Divining human and their own system underlying goals and motivations is not simple. And of course giving priority to the “right” goals when they compete or are in conflict will be an increasingly difficult task to accomplish, given todays human diversity.
  • Human-Human cooperation: Here it gets pretty interesting, but the paper seems to say that any future AI system should be designed to enhance human-human interaction, not deter or interfere with it. One can see the challenge of disinformation today and how wonderful it would be to have some AI agent that could filter all this and present a proper picture of our world. But, humans have different goals and trying to figure out what they are and which are common and thereby something to be enhanced will be an ongoing challenge.

The problem with today’s AI research is that its all about improving specific activities (image recognition, language understanding, recommendation engines, etc) but all are point solutions and none (if any) are focused on cooperation.

Tit for tat wins the award

To that end, the authors of the paper call for a new direction one that attempts to imbue AI systems with social intelligence and cooperative intelligence to work well in the broader, human dominated world that lies ahead.

In the Nature article they mentioned a 1984 book by Richard Axelrod, The Evolution of Cooperation. Perhaps, the last great research on cooperation that was ever produced.

In this book it talked about a world full of simulated prisoner dilemma actors that interacted, one with another, at random.

The experimenters programmed some agents to always do the proper thing for their current partner, some to always do the wrong thing to their partner, others to do right once than wrong from that point forward, etc. The experimenters tried every sort of cooperation policy they could think of.

Each agent in an interaction would get some number of points for an interaction. For example, if both did the right thing they would each get 3 points, if one did wrong, the sucker would get 1 and the bad actor would get 4, both did wrong each got 1 point, etc.

The agents that had the best score during a run (of 1000s of random pairings/interactions) would multiply for the the next run and the agents that did worse would disappear over time in the population of agents in simulated worlds.

The optimal strategy that emerged from these experiments was

  1. Do the right thing once with every new partner, and
  2. From that point forward tit for tat (if the other party did right the last time, then you do right thing the next time you interact with them, if they did wrong the last time, then you do wrong the next time you interact with them).

It was mind boggling at the time to realize that such a simple strategy could be so effective/sustainable in simulation and perhaps in the real world. It turns out that in a (simulated) world of bad agents, there would be this group of Tit for Tat agents that would build up, defend itself and expand over time to succeed.

That was the state of the art in cooperation research back then (1984). I’ve not seen anything similar to this since.

I haven’t seen anything like this that discusses how to implement algorithms in support of social intelligence.

~~~~

The authors of the Nature article believe it’s once again time to start researching cooperation techniques and start researching social intelligence so we can instill proper cooperation and social intelligence technology into future AI (AGI) systems .

Perhaps if we can do this, we may create a better AI (or AGI) so that both it and we can live better in our world, galaxy and universe.

Comments?

The myth of AGI

Sorry seem to be on an AGI bent this month…

Read an article the other day about a new book (The myth of AI, by Erik. J. Larson) that explains how the present direction of AI-ML-DL will be very unlikely to achieve artificial general intelligence (AGI) given it’s current direction. Amazon and others offer a short preview of the book which is where most of this discussion comes from.

Types of (human) reasoning

Near as I can tell, (don’t have the book), the book discusses the three types of reasoning that exist in human intellect, i.e., deduction, induction and abduction.

  • Deduction uses formal logic (or its equivalents) to derive facts or theorems from basic principles.
  • Induction uses a multitude of samples and constructs general principles from the analysis of them
  • Abduction uses a set of probabilistic assertions and formal logic, to come up with a probabilistic principle.

Deduction is most famously observed in geometry and arithmetic proofs and was most evident in the early years of AI through its use of expert systems. The challenge with expert systems is that the real world is vastly more complex than any geometrical or arithmetical artifice that humankind can produce.

Expert systems became champions of checkers, chess and some other games but in the end was not easily generalizable beyond a few (gaming and medically) restricted domains.

Induction is presently all the rage and represents what machine learning and deep neural networks (DNN) are doing with all that training data and resultant classification inferencing.

Today we have DNNs that can classify the objects in an image, can learn to play any game on the planet better than humans, and can even safely drive a car down the road.

The current AI world view is that this form of reasoning, DNN induction, will if taken to its extreme will ultimately result in some level of AGI, or human-equivalent levels of intelligence in a system. The author of the book begs to differ.

Abduction is less well known or discussed in rational circles. It’s essentially what any human does when presented with real world examples/experiences to derive an understanding (or principe) of what happened.

For example, a plate full of cookies last night becomes an almost empty plate of crumbs and two cookies. So what happened, your son woke up early, consumed most if not all of them, and left for work. This is a probabilistic (most likely) inference, but has a high probability of being true.

Any AGI will need all forms of reasoning

The challenge is that AI has been through the deduction phase through the rise of expert systems which crashed and burned because of the cost and time required to produce an exhaustive and correct expert system. And AI is currently in the induction phase, via DNN training, which seems to be entirely more generalizable and successfully usable in many different domains, but no one is talking seriously about doing abduction in AI (anymore).

The author claims (again, have not read the book) that any AGI will require as much abduction as induction (as well as perhaps deduction), and therefore, AGI is not inevitable based on our current AI DNN (or induction) intensive path.

Previous and current attempts at abduction reasoning

Some may recall fuzzy logic as one of the avenues taken after expert systems seemed to fail at doing successful and realistic inferencing around the end of last century. Fuzzy logic was a way of bring probabilities into deduction, not unlike abduction as defined above. With fuzzy logic each assertion or base assumption was given a probabilistic value (of being true) and the final derivation was assigned some level of probability of being true.

The wikipedia article has definitions for fuzzy logic and, or and not which of course would allow any system to make these assertions. But fuzzy logic (like expert systems above) suffered from the inability to exhaustively cover all examples in a real world situation.

Furthermore, the (funny) thing about DNNs is that they are much more probabilistic than it appears. If one examines classification outputs of any DNN, it is extremely rare to see some sort of boolean (true or false) yes or no answers. Mostly one sees a series of probabilities that are assigned to each classification bucket.

DNN systems hide these probabilities by just selecting the maximum (or minimum) probability generated as its final classification. This is entirely an artifact of needing to have some discrete output (classification selection). But DNN (internal) results always result in probabilistic values.

So although, pure induction doesn’t include probabilities, DNN induction as practiced today in AI systems, uses probabilistic reasoning in every layer of a DNN and in its final results.

What else may be missing from AI to allow AGI to be developed

Personally, AGI seems to require not just the reasoning approaches above, but a more workable and general purpose planning solution. I’ve tried to identify to see whether some researchers are using DNNs to provide general purpose planning solutions but have been yet to find any (in publcly available research). These are probably the one place where expert (or control) fuzzy systems still shine. But again they are hard to generalize and prove almost impossible to be completely exhaustive.

Nonetheless, in the end, I think that all the above just proves, that there are a number of distinct reasoning and other (planning) techniques that may need to come together to provide AGI. As any of us can attest, all of these different approaches are available within any human intellect.

And if we assume that any AGI will need to follow the human design to intelligence (not a given), they will all need to be stitched together, combined and brought to bear to realize AGI.

But, at present, with all the focus on DNN/induction, we, as AI researchers, are not making any progress on using these other techniques or in combining them into a single system.

And for that I am happy. I would be very pleased to have any AGI be farther out than nearer term. Because for the life of me, AGI scares the s&#t out of me.

Mostly because I don’t see any real way to control AGI, once unleashed. That and given the diversity of motives around this world, I don’t see any realistic mechanism to instill a universal and firm (unalterable) belief in the sanctity of human and other life, the dependance this life has on our environment/biosphere and the rule of law needed to maintain peace across humankind (and I’m probably missing a half dozen more things that we would want any AGI to adhere to).

Maybe, if I saw more effort on how, we as a species can come up with universal views on these and other topics and can come up with some way of instilling, essentially a system of programs, with these unalterable beliefs and AGI controls based on these, I’d be less fearful of AGI emerging.

Lacking that, any way of delaying its emergence, is fine by me.

Comments?

Photo Credit(s):

AI inferencing using light alone

Researchers at UCLA have taken a trained DL neural network and implemented it into a series of passive optical only, 3D printed diffraction gratings to perform fashion MNIST object classification. And did the same with a MNIST handwritten digit and ImageNet DL neural network classifiers.

But first please take our new poll:

Experimental testing of 3D-printed D2NNs.(A and B) After the training phase, the final designs of five different layers (L1, L2, …, L5) of the handwritten digit classifier, fashion product classifier, and the imager D2NNs are shown. To the right of the network layers, an illustration of the corresponding 3D-printed D2NN is shown. (C and D) Schematic (C) and photo (D) of the experimental terahertz setup. An amplifier-multiplier chain was used to generate continuous-wave radiation at 0.4 THz, and a mixer-amplifier-multiplier chain was used for the detection at the output plane of the network. RF, radio frequency; f, frequency.

See the article on SlashGear, 3D printed all-optical diffractive deep learning neural network…. The research article is only available on Optical Society of America’s website/magazine (see Residual D2NN: training diffractive deep neural networks via learnable light shortcuts behind hard paywall). However, I did find a follow on article on ArchivX (see Analysis of Diffractive Optical Neural Networks and Their Integration with Electronic Neural Networks) that discussed how to integrate D2NN approaches with an electronic NN to create a hybrid inference engine. And another earlier Science article (see All-optical machine learning using diffractive deep neural networks) that was available which described earlier versions of D2NN technology for MNIST digit classification, fashion MNIST classification and ImageNet object classification.

How does it work

Apparently the researchers trained a normal (electronic based) deep learning neural network on the MNIST, Fashion MNIST and ImageNet and then converted the resultant trained NNs into a set of multiple diffraction grids. They did some computer simulation of the D2NN and once satisfied it worked and achieved decent accuracy, 3D printed the diffraction plates.

All-optical D2NN-based classifiers. These D2NN designs were based on spatially and temporally coherent illumination and linear optical materials/layers. (a) D2NN setup for the task of classification of handwritten digits (MNIST), where the input information is encoded in the amplitude channel of the input plane. (b) Final design of a 5-layer, phase-only classifier for handwritten digits. (c) Amplitude distribution at the input plane for a test sample (digit ‘0’). (d-e) Intensity patterns at the output plane for the input in (c); (d) is for MSE-based, and (e) is softmax- cross-entropy (SCE)-based designs. (f) D2NN setup for the task of classification of fashion products (Fashion-MNIST), where the input information is encoded in the phase channel of the input plane. (g) Same as (b), except for fashion product dataset. (h) Phase distribution at the input plane for a test sample. (i-j) Same as (d) and (e) for the input in (h),  refers to the illumination source wavelength. Input plane represents the plane of the input object or its data, which can also be generated by another optical imaging system or a lens, projecting an image of the object data onto this plane.

In their D2NN, they start with coherent (laser) light in the THz spectrum, used this to illuminate the input plane (I assume an image of the object/digit/fashion accessory) and passed this through multiple plates of diffraction grids onto THz detector which was used to detect the illuminated spot that indicated the classification.

The article in science has a supplementary materials download that show how the researchers converted NN weights into a diffraction grating. Essentially each pixel on the diffraction grating either transmits, refracts, or reflects a light path. And this represents the connections between layers. It’s unclear whether the 5 or 6 plates used in the D2NN correspond to the NN layers but it’s certainly possible.

And to the life of me I can’t understand what they mean by “Residual D2NN”, other than if it means using a trained (residual) NN and converting this to D2NN.

Some advantages of D2NN

3D printing diffraction gratings means anyone/lab could do this. The 3D printers they used had a spatial accuracy of 600 dpi, with 0.1mm accuracy, almost consumer grade 3D printers. In any case, being able to print these in a matter of hours, while not as easy as changing an all digital NN, seems like an easy way to try out the approach.

For example, for the MNIST digit classifier they used a pixel size of 400um and each diffraction layer they created was equivalent to 200X200 neural weights. Which means that 5 layer D2NN could handle about 0.2M neural weights which were completely connected to one another. This meant they could have (200×200)**2*5=8B connections in the MNIST D2NN. In the image classifier, each diffraction layer had 300×300 neural weights. So D2NN’s seem to scale very well.

Being an all passive optical device, the system is operates entirely in parallel, That is, the researchers indicated that the D2NN devices operate at the speed of light and would perform the inferencing activity in the time it takes a camera to capture the image.

Also the device uses very little energy (I assume just the energy for the THz generator, the input plane detector and the THz detector at the end.

And the researchers also claimed the device was cheap to manufacture, it could be created for less than $50. (Unclear if this included all the electronics or just the D2NN diffraction gratings and holder). And once you have locked into a D2NN that you wanted to use, could be manufactured in volume, very cheaply (sort of like stamping out CD platters). Finally, the number of neural network nodes and layers can be scaled up to a large number of layers and nodes per layer while still fitting on the diffraction gratings. In contrast, all electronic NN require more compute power as you scale up network layers and nodes per layer.

The other article (ArchivX) talked about potentially using a hybrid optical-electronic DNN approach with some layers being D2NN and others being purely digital (electronics). Such a system could potentially be used where some portion of the NN was more stable/more compute intensive than others and where the final output classification layer(s) was more changeable and much smaller/less compute intensive. Such a hybrid system could make use of the best of of the all optical D2NN to efficiently and quickly compress the input space and then have the electronic final classification layer provide the final classification step.

The Oracle

Combining a handful of D2NNs into a device that accepts speech input and provides speech output with the addition of say an offline copy of Wikipedia, Google Books etc. with a search engine that could be used to retrieve responses to questions asked would create an oracle device. Where you would ask a question and the device would respond with the best answer it could find (in it’s databases).

If this could be made out of an all passive optical components and use natural sunlight/electronic illumination to perform it’s functionality, such an all optical, question to answer oracle would be very useful to the populations of the world. And could be manufactured in volume very cheaply and would cost almost nothing to operate.

A couple of other tweaks, if we could collapse the multiple grating D2NNs into a single multi-layer plate/platter and make these replaceable in the device that would allow the oracle’s information base to be updated periodically.

Then if we could embed such a device into a Long Now Clock that would reflect sunlight onto the disk every Solstice, or Equinox, then we could have a quarterly oracle device that could last for 1000 of years. That would provide answers to queries one day every quarter. And that would be quite the oracle…

Photo credit(s):

cOAlition S requires open access to funded research

I read a Science article this last week (A new mandate highlights costs and benefits of making all scientific articles free) about a group of funding organizations that have come together to mandate open access to all peer-reviewed research they fund called Plan S. The list of organizations in cOAlition S is impressive including national R&D funding agencies from UK, Ireland, Norway, and a number of other countries, charitable R&D funding agencies from WHO, Welcome Trust, Bill&Melinda Gates Foundation and more, and the group is also being funded by the EU. Plan S takes effect this year.

Essentially, all research funded by these organizations must be immediately published in open access forum, open access journals or be freely available in an open access section of a publishers website which means it could be free to be read by anyone worldwide with access to the web. Authors and institutions will retain copyright for the work and the work will be published under an open access license such as the CC BY (Creative Commons Attribution) license.

Why open access is important

At this blog, frequently we find ourselves writing about research which is only available on a paid subscription or on a pay per article basis. However, sometimes, if we search long enough, we find a duplicate of the article published in pre-print form in some preprint server or open access journal.

We have written about open access journals before (see our New Science combats Coronavirus post). Much of what we do on this blog would not be possible without open access journals like PLoS, BioRxiv, and PubMed.

Open access mandates are trending

Open access mandates have been around for a while now. And even the US Gov’t got into the act, mandating all research funded by the NIH be open access by 2008, with Dept of Agriculture and Energy following later (see wikipedia Open access mandates).

In addition, given the pandemic emergency, many research publishers like Nature and Elsevier made any and all information about the Coronavirus free access on their websites.

Impacts and R&D research publishing business model

Although research is funded by public organizations such as charities and government agencies, prior to open access mandates, most research was published in peer-reviewed journal magazines which charged a fee for access. For many research organizations, those fees were a cost of doing research. If you were an independent researcher or in an institution that couldn’t afford these fees, attempting to do cutting edge research was impossible without this access.

Yes in some cases, those journal repositories waved these fees for deserving institutions and organizations but this wasn’t the case for individual researchers. Or If you were truly diligent, you could request a copy of a paper from an author and wait.

Of course, journal publishers have real expenses they needed to cover, as well as make a reasonable profit. But due to business consolidation, there were fewer independent journals around and as a result, they charged bundled license fees for vast swathes of research articles. Such a wide bundle may or may not be of interest to an individual or an institution. That plus with consolidation, profits were becoming a more significant consideration.

So open access mandates, often included funding to cover fees for publishers to supply open access. Such fees varied widely. So open access mandates also began to require fees to be published and to be supplied a description how prices were calculated. By doing so, their hope was to make such costs more transparent

Impacts on authors of research articles

Somewhere there’s an aphorism for researchers that says “publish or perish“, which means you must publish research in order to become a recognized expert in your field. Recognition often the main driver behind better academic employment and more research funding.

However, it’s not just about volume of published papers, the quality of research also matters. And the more highly regarded publishing outlets have an advantage here, in that they are de facto gatekeepers to whats published in their journals. As such, where you publish can often lend credibility to any research.

Another thing changed over the last few decades, judging the quality of research has become more quantative. Nowadays, research quality is also dependent on the number of citations it receives. The more popular a publisher is, the more readers it has which increases the possibility for citations.

Thus, most researchers try to publish their best work in highly regarded journals. And of course, these journals have a high cost to provide open access.

Successful research institutions can afford to pay these prices but those further down the totem pole cannot.

Most mandates come with additional funding to support paying the cost to supply open access. But they also require publishing and justifying these. In the belief that in doing this so it will lend some transparency to these costs.

So the researcher is caught in the middle. Funding organizations want open access to research they fund. And publishers want to be paid a profit for that access.

History of research publication

Nature magazine first started publishing research in 1859, Science magazine first published in 1880, the Royal Society first published research in 1665. So publishing research has been going on for 350 years, and at least as a for profit business model, since the mid-1800s.

Research prior to being published in journals was only available in books. And more than likely, the author of the research had to pay to have a book published and the publisher made money only when those books were sold. And prior to that, scientific research was mostly only available in a course of study, also mostly paid for by the student.

So science has always had a cost to access. What open access mandates are doing is moving this cost to something added to the funding of research.

Now if open access can only solve the reproducibility crisis in science we could have us a real scientific revolution.

Comments?

Photo Credits: