New DRAM can be layered on top of CPU cores

At the last IEDM (IEEE International ElectronDevices Meenting), there were two sessions devoted to a new type of DRAM cell that consists or 2 transistors and no capacitors (2TOC) that can be built in layers on top of a micro processor which doesn’t disturb the microprocessor silicon. I couldn’t access (behind paywalls) the actual research but one of the research groups was from Belgium (IMEC) and the other from the US (Notre Dame and R.I.T). This was written up in a couple of teaser articles in the tech press (see IEEE Spectrum tech talk article).

DRAM today is built using 1 transistor and 1 capacitor (1T1C). And it appears that capacitors and logic used for microprocessors aren’t very compatible. As such, most DRAM lives outside the CPU (or microprocessor cores) chip and is attached over a memory bus.

New 2T0C DRAM Bit Cell: Data is written by appliying current to the WBL and WWL and bit’s are read by seeing if acurrent can pass through the RWL RBL

Memory busses have gotten faster in order to allow faster access to DRAM but this to is starting to reach fundamental physical limits and DRAM memory sizes aren’t scaling like the used to.

Wouldn’t it be nice if there were a new type of DRAM that could be easlly built closer or even layered on top of a CPU chip, with faster direct access from/to CPU cores. through inter chip electronics.

Oxide based 2T0C DRAM

DRAM was designed from the start with 1T1C so that it could hold a charge. With a charge in place it could be read out quickly and refreshed periodically without much of a problem.

The researcher found that at certain sizes (and with proper dopants) small transistors can also hold a (small) charge without needing any capacitor.

By optimizing the chemistry used to produce those transistors they were able to make 2T0C transistors hold memory values. And given the fabrication ease of these new transistors, they can easily be built on top of CPU cores, at a low enough temperature so as not to disturb the CPU core logic.

But, given these characteristics the new 2T0C DRAMB can also be built up in layers. Just like 3D NAND and unlike current DRAM technologies.

Today 3D NAND is being built at over 64 layers, with Flash NAND roadmap’s showing double or quadruple that number of layers on the horizon. Researchers presenting at IMEC were able to fabricate an 8 layer 2T0C DRAM on top of a microprocessor and provide direct, lightening fast access to it.

The other thing about the new DRAM technology is that it doesn’t need to be refreshed as often. Current DRAM must be refreshed every 64 msec. This new 2T0C technology has a much longer retention time and currently only needs to be refreshed every 400s and much longer retention times are technically feasible.

Some examples of processing needing more memory:

  • AI/ML and the memory wall -Deep learning models are getting so big that memory size is starting to become a limiting factor in AI model effectiveness. And this is just with DRAM today. Optane and other SCM can start to address some of this problem but ithe problem doesn’t go away, AI DL models are just getting more complex I recently read an article where Google trained a trillion parameter language model.
  • In memory databases – SAP HANA is just one example but they are other startups as well as traditional database providers that are starting to use huge amounts of memory to process data at lightening fast speeds. Data only seems to grow not shrink.

Yes Optane and other SCM today can solve some of thise problems. But having a 3D scaleable DRAM memory, that can be built right on chip core, with longer hold times and faster direct access can be a game changer.

It’s unclear whether we will see all DRAM move to the new 2T0C format, but if it can scale well in the Z direction has better access times, and longer retention, it’s unclear why this wouldn’t displace all current 1T1C DRAM over time. However, given the $Bs of R&D spend on new and current DRAM 1T1C fabrication technology, it’s going to be a tough and long battle.

Now if the new 2T0C DRAM could only move from 1 bit per cell to multiple bits per cell, like SLC to MLC NAND, the battle would heat up considerably.

Photo Credits:

Is hardware innovation accelerating – hardware vs. software innovation (round 6)

There’s something happening to the IT industry, that maybe has not happened in a couple of decades or so but hardware innovation is back. We’ve been covering bits and pieces of it in our hardware vs software innovation series (see Open source ASiCs – HW vs. SW innovation [round 5] post).

But first please take our new poll:

Hardware innovation never really went away, Intel, AMD, Apple and others had always worked on new compute chips. DRAM and NAND also have taken giant leaps over the last two decades. These were all major hardware suppliers. But special purpose chips, non CPU compute engines, and hardware accelerators had been relegated to the dustbins of history as the CPU giants kept assimilating their functionality into the next round of CPU chips.

And then something happened. It kind of made sense for GPUs to be their own electronics as these were SIMD architectures intrinsically different than SISD, standard von Neumann X86 and ARM CPUs architectures

But for some reason it didn’t stop there. We first started seeing some inklings of new hardware innovation in the AI space with a number of special purpose DL NN accelerators coming online over the last 5 years or so (see Google TPU, SC20-Cerebras, GraphCore GC2 IPU chip, AI at the Edge Mythic and Syntiants IPU chips, and neuromorphic chips from BrainChip, Intel, IBM , others). Again, one could look at these as taking the SIMD model of GPUs into a slightly different direction. It’s probably one reason that GPUs were so useful for AI-ML-DL but further accelerations were now possible.

But it hasn’t stopped there either. In the last year or so we have seen SPUs (Nebulon Storage), DPUs (Fungible, NVIDIA Networking, others), and computational storage (NGD Systems, ScaleFlux Storage, others) all come online and become available to the enterprise. And most of these are for more normal workload environments, i.e., not AI-ML-DL workloads,

I thought at first these were just FPGAs implementing different logic but now I understand that many of these include ASICs as well. Most of these incorporate a standard von Neumann CPU (mostly ARM) along with special purpose hardware to speed up certain types of processing (such as low latency data transfer, encryption, compression, etc.).

What happened?

It’s pretty easy to understand why non-von Neumann computing architectures should come about. Witness all those new AI-ML-DL chips that have become available. And why these would be implemented outside the normal X86-ARM CPU environment.

But SPU, DPUs and computational storage, all have typical von Neumann CPUs (mostly ARM) as well as other special purpose logic on them.

Why?

I believe there are a few reasons, but the main two are that Moore’s law (every 2 years halving the size of transistors, effectively doubling transistor counts in same area) is slowing down and Dennard scaling (as you reduce the size of transistors their power consumption goes down and speed goes up) has stopped almost. Both of these have caused major CPU chip manufacturers to focus on adding cores to boost performance rather than just adding more transistors to the same core to increase functionality.

This hasn’t stopped adding instruction functionality to each CPU, but it has slowed considerably. And single (core) processor speeds (GHz) have reached a plateau.

But what it has stopped is having the real estate available on a CPU chip to absorb lots of additional hardware functionality. Which had been the case since the 1980’s.

I was talking with a friend who used to work on math co-processors, like the 8087, 80287, & 80387 that performed floating point arithmetic. But after the 486, floating point logic was completely integrated into the CPU chip itself, killing off the co-processors business.

Hardware design is getting easier & chip fabrication is becoming a commodity

We wrote a post a couple of weeks back talking about an open foundry (see HW vs. SW innovation round 5 noted above)that would take a hardware design and manufacture the ASICs for you for free (or at little cost). This says that the tool chain to perform chip design is becoming more standardized and much less complex. Does this mean that it takes less than 18 months to create an ASIC. I don’t know but it seems so.

But the real interesting aspect of this is that world class foundries are now available outside the major CPU developers. And these foundries, for a fair but high price, would be glad to fabricate a 1000 or million chips for you.

Yes your basic state of the art fab probably costs $12B plus these days. But all that has meant is that A) they will take any chip design and manufacture it, B) they need to keep the factory volume up by manufacturing chips in order to amortize the FAB’s high price and C) they have to keep their technology competitive or chip manufacturing will go elsewhere.

So chip fabrication is not quite a commodity. But there’s enough state of the art FABs in existence to make it seem so.

But it’s also physics

The extremely low latencies that are available with NVMe storage and, higher speed networking (100GbE & above) are demanding a lot more processing power to keep up with. And just the physics of how long it takes to transfer data across a distance (aka racks) is starting to consume too much overhead and impacting other work that could be done.

When we start measuring IO latencies in under 50 microseconds, there’s just not a lot of CPU instructions and task switching that can go on anymore. Yes, you could devote a whole core or two to this process and keep up with it. But wouldn’t the data center be better served keeping that core busy with normal work and offloading that low-latency, realtime (like) work to a hardware accelerator that could be executing on the network rather than behind a NIC.

So real time processing has become faster, or rather the amount of time to execute CPU instructions to switch tasks and to process data that needs to be done in realtime to keep up with faster line speed is becoming shorter.

So that explains DPUs, smart NICS, DPUs, & SPUs. What about the other hardware accelerator cards.

  • AI-ML-DL is becoming such an important and data AND compute intensive workload that just like GPUs before them, TPUs & IPUs are becoming a necessary evil if we want to service those workloads effectively and expeditiously.
  • Computational storage is becoming more wide spread because although data compression can be easily done at the CPU, it can be done faster (less data needs to be transferred back and forth) at the smart Drive.

My guess we haven’t seen the end of this at all. When you open up the possibility of having a long term business model, focused on hardware accelerators there would seem to be a lot of stuff that needs to be done and could be done faster and more effectively outside the core CPU.

There was a point over the last decade where software was destined to “eat the world”. I get a lot of flack for saying that was BS and that hardware innovation is really eating the world. Now that hardtware innovation’s back, it seems to be a little of both.

Comments?

Photo Credits:

Software defined power grid

Read an article this past week in IEEE Spectrum (The Software Defined Power Grid is here) about a company that has been implementing software defined power grids throughout USA and the world to better integrate and utilize renewable energy alongside conventional power generation equipment.

Moreover, within the last year or so, Tesla has installed a Virtual Power Plant (VPP) using residential solar and grid scale batteries to better manage the electrical grid of South Australia (see Tesla’s Australian VPP propped up grid during coal outage). VPP use to offset power outages would necessitate something like a software defined power grid.

Software defined power grid

Not sure if there’s a real definition somewhere but from our perspective, a software defined power grid is one where power generation and control is all done through the use of programatic automation. The human operator still exists to monitor and override when something goes wrong but they are not involved in the moment to moment control of which power is saved vs. fed into the grid.

About a decade ago, we wrote a post about smart power meters (Smart metering’s data storage appetite) discussing the implementation of smart meters for home owners that had some capabilities to help monitor and control power use. But although that technology still exists, the software defined power grid has moved on.

The IEEE Spectrum article talks about a phasor measurement units (PMUs) that are already installed throughout most power grids. It turns out that most PMUs are capable of transmitting phasor power status at 60 times a second granularity and each status report is time stamped with high accuracy, GPS synchronized time.

On the other hand, most power grids today use SCADAs (supervisory control and data acquisition) to monitor and manage the power grid. But SCADAs only send data every 2-4 seconds. PMU’s are also installed in most power grids, but their information is not as important as SCADA to the monitoring, management and control of most (non-software defined) power grids.

One software defined power grid

PXiSE, the company in the IEEE Spectrum article, implemented their first demonstration project in Hawaii. That power grid had reached the limit of wind and solar power that it could support with human management. The company took their time and implemented a digital simulation of the power grid. But with the simulation in hand, battery storage and a off the shelf PC, the company was able to manage the grids power generation mix in real time with complete automation.

After that success, the company next turned to a micro-grid (building level power) with electronic vehicles, battery and solar power. Their software defined power grid reduced peak electricity demand within the building, saving significant money. With that success the company took their software defined power grid on the road to South Korea, Chile, Mexico and a number of other locations the world.

Tesla’s VPP

The Tesla VPP in South Australia, is planned to consists of up to 50K houses with solar PV panels and 13.5Kwh of batteries, able to deliver up to 250Mw of power generation and 650Mwh of power storage.

At the present time, the system has ~1000 house systems installed but even with that limited generation and storage capability it has already been called upon at least twice to compensate for coal generation power outage. To manage each and every household, they’d need something akin to the smart meters mentioned above in conjunction with a plethora of PMUs.

Puerto Rico’s power grid problems and solutions

There was an article not so long ago about the disruption to Puerto Rico’s power grid caused by Hurricanes Irma and Maria in IEEE Spectrum (Rebuilding Puerto Rico’s Power Grid: The Inside Story) and a subsequent article on making Puerto Rico’s power grid more resilient to hurricanes and other natural disasters (How to harden Puerto Rico’s power grid). The later article talked about creating micro grids, community PV and battery storage that could be disconnected from the main grid in times of disaster but also used to distribute power generation throughout the island.

Although the researchers didn’t call for the software defined power grid, it is our understanding that something similar would be an outstanding addition to their work there.

~~~~

As the use of renewables goes up and the price of batteries decreases while their capabilities go up over time, more and more power grids will need to become software defined. In the end, more software defined power grids with increasing renewables power generation and storage will make any power grid, more resilient and more fault tolerant.

Photo Credit(s):

Anti-Gresham’s Law: Good information drives out bad

(Good information is in blue, bad information is in Red)

Read an article the other day in ScienceDaily (Faster way to replace bad info in networks) which discusses research published in a recent IEEE/ACM Transactions on Network journal (behind paywall). Luckily there was a pre-print available (Modeling and analysis of conflicting information propagation in a finite time horizon).

The article discusses information epidemics using the analogy of a virus and its antidote. This is where bad information (the virus) and good information (the antidote) circulate within a network of individuals (systems, friend networks, IOT networks, etc). Such bad information could be malware and its good information counterpart could be a system patch to fix the vulnerability. Another example would be an outright lie about some event and it’s counterpart could be the truth about the event.

The analysis in the paper makes some simplifying assumptions. That in a any single individual (network node), both the virus and the antidote cannot co-exist. That is either an individual (node) is infected by the virus or is cured by the antidote or is yet to be infected or cured.

The network is fully connected and complex. That is once an individual in a network is infected, unless an antidote is developed the infection proceeds to infect all individuals in the network. And once an antidote is created it will cure all individuals in a network over time. Some individuals in the network have more connections to other nodes in the network while different individuals have less connections to other nodes in the network.

The network functions in a bi-directional manner. That is any node, lets say RAY, can infect/cure any node it is connected to and conversely any node it is connected to can infect/cure the RAY node.

Gresham’s law, (see Wikipedia article) is a monetary principle which states bad money in circulation drives out good. Where bad money is money that is worth less than the commodity it is backed with and good money is money that’s worth more than the commodity it is backed with. In essence, good money is hoarded and people will preferentially use bad money.

My anti-Gresham’s law is that good information drives out bad. Where good information is the truth about an event, security patches, antidotes to infections, etc. and bad infrormation is falsehoods, malware, biological viruses., etc

The Susceptible Infected-Cured (SIC) model

The paper describes a SIC model that simulates the (virus and antidote) epidemic propagation process or the process whereby virus and its antidote propagates throughout a network. This assumes that once a network node is infected (at time0), during the next interval (time0+1) it infects it’s nearest neighbors (nodes that are directly connected to it) and they in turn infect their nearest neighbors during the following interval (time0+2), etc, until all nodes are infected. Similarly, once a network node is cured it will cure all it’s neighbor nodes during the next interval and these nodes will cure all of their neighbor nodes during the following interval, etc, until all nodes are cured.

What can the SIC model tell us

The model provides calculations to generate a number of statistics, such as half-life time of bad information and extinction time of bad-information. The paper discusses the SIC model across complex (irregular) network topologies as well as completely connected and star topologies and derives formulas for each type of network

In the discussion portion of the paper, the authors indicate that if you are interested in curing a population with bad information it’s best to map out the networks’ topology and focus your curation efforts on those node(s) that lie along the (most) shortest path(s) within a network.

I wrongly thought that the best way to cure a population of nodes would be to cure the nodes with the highest connectivity. While this may work and such nodes, are no doubt along at least one if not all, shortest paths, it may not be the optimum solution to reduce extinction time, especially If there are other nodes on more shortest paths in a network, target these nodes with a cure.

Applying the SIC model to COVID-19

It seems to me that if we were to model the physical social connectivity of individuals in a population (city, town, state, etc.). And we wanted to infect the highest portion of people in the shortest time we would target shortest path individuals to be infected first.

Conversely, if we wanted to slow down the infection rate of COVID-19, it would be extremely important to reduce the physical connectivity of indivduals on the shortest path in a population. Which is why social distancing, at least when broadly applied, works. It’s also why, when infected, self quarantining is the best policy. But if you wished to not apply social distancing in a broad way, perhaps targeting those individuals on the shortest path to practice social distancing could suffice.

However, there are at least two other approaches to using the SIC model to eradicate (extinguish the disease) the fastest:

  1. Now if we were able to produce an antidote, say a vaccine but one which had the property of being infectious (say a less potent strain of the COVID-19 virus). Then targeting this vaccine to those people on the shortest paths in a network would extinguish the pandemic in the shortest time. Please note, that to my knowledge, any vaccine (course), if successful, will eliminate a disease and provide antibodies for any future infections of that disease. So the time when a person is infected with a vaccine strain, is limited and would likely be much shorter than the time soemone is infected with the original disease. And most vaccines are likely to be a weakened version of an original disease may not be as infectious. So in the wild the vaccine and the original disease would compete to infect people.
  2. Another approach to using the SIC model and is to produce a normal (non-transmissible) vaccine and target vaccination to individuals on the shortest paths in a population network. As once vaccinated, these people would no longer be able to infect others and would block any infections to other individuals down network from them. One problem with this approach is if everyone is already infected. Vaccinating anyone will not slow down future infection rates.

There may be other approaches to using SIC to combat COVID-19 than the above but these seem most reasonable to me.

So, health organizations of the world, figure out your populations physical-social connectivity network (perhaps using mobile phone GPS information) and target any cure/vaccination to those individuals on the highest number of shortest paths through your network.

Comments?

Photo Credit(s):

  1. Figure 2 from the Modeling and analysis of conflicting information propagation in a finite time horizon article pre-print
  2. Figure 3 from the Modeling and analysis of conflicting information propagation in a finite time horizon article pre-print
  3. COVID-19 virus micrograph, from USA CDC.

Gaming is driving storage innovation at WDC

I was at SFD19 a couple of weeks ago and Western Digital supplied the afternoon sessions on their technology (see videos here). Phil Bullinger gave a great session on HDDs and the data center market. Carl Che did a session on HDD technology and discussed on how 5G was going to ramp up demand for video streaming and IoT data requirements. Of course one of the sessions was on their SSD and NAND technologies.

But the one session that was pretty new and interesting to me was their discussion on how Gaming and how it’s driving system innovation. Eric Spaneut, VP of Client Computing was the main speaker for the session but they also had Leah Schoeb, Sr. Developer Manager at AMD, to discuss the gaming market and its impact on systems technology.

There were over 100M viewers of the League of Legends World Championships, with a peak viewership of 44M viewers. To put that in perspective the 2020 Super Bowl had 102M viewers. So gaming championships today are almost as big as the Super Bowl in viewership.

Gaming demands higher performing systems

Gaming users are driving higher compute processors/core counts, better graphics cards, faster networking and better storage. Gamers are building/buying high end desktop systems that cost $30K or more, dwarfing the cost of most data center server hardware.

Their gaming rigs are typically liquid cooled, have LEDs all over and are encased in glass. I could never understand why my crypto mine graphics cards had LEDs all over them. The reason was they were intended for gaming systems not crypto mines.

Besides all the other components in these rigs, they are also buying special purpose storage. Yes storage capacity requirements are growing for games but performance and thermal/cooling have also become major considerations.

Western Digital has dedicated a storage line to gaming called WD Black. It includes both HDDs and SSDs (internal NVMe and external USB/SATA attached) at the moment. But Leah mentioned that gaming systems are quickly moving away from HDDs onto SSDs.

Thermal characteristics matter

Of the WDC’s internal NVMe SSDs (WD Black SN750s), one comes with a heat sink attached. It turns out SSD IO performance can be throttled back due to heat. The heatsink allows the SSD to operate at higher temperatures and offer more bandwidth than the one without. Presumably, it allows the electronics to stay cooler and thus stay running at peak performance.

I believe their WD Black HDDs have internal fans in them to keep them cool. And of course they all come in black with LEDs surrounding them.

Storage can play an important part in the “gaming experience” for users once you get beyond network bottlenecks for downloading. For downloading and storage perform well . however for game loading and playing/editing videos/other gaming tasks, NVMe SSDs offer a significant performance boost over SATA SDDs and HDDs.

But not all gaming is done on high-end gaming desktop systems. Today a lot of gaming is done on dedicated consoles or in the cloud. Cloud based gaming is mostly just live streaming of video to a client device, whether it be a phone, tablet, console, etc. Live game streaming is almost exactly like video on demand but with more realtime input/output and more compute cores/graphic engines to perform the gaming activity and to generate the screens in “real” time. So having capacity and performance to support multiple streams AND the performance needed to create the live, real time experience takes a lot of server compute & graphics hardware, networking AND storage.

~~~~

So wherever gamers go, storage is becoming more critical in their environment. Both WDC and AMD see this market as strategic and growing, whose requirements are unique enough to demand special purpose products. They bothy are responding with dedicated hardware and product lines tailored to gaming needs.

Photo credit(s): All graphics in this post are from WDC’s gaming session video stream

Internet of Tires

Read an article a couple of weeks back (An internet of tires?… IEEE Spectrum) and can’t seem to get it out of my head. Pirelli, a European tire manufacturer was demonstrating a smart tire or as they call it, their new Cyber Tyre.

The Cyber Tyre includes accelerometer(s) in its rubber, that can be used to sense the pavement/road surface conditions. Cyber Tyre can communicate surface conditions to the car and using the car’s 5G, to other cars (of same make) to tell them of problems with surface adhesion (hydroplaning, ice, other traction issues).

Presumably the accelerometers in the Cyber Tyre measure acceleration changes of individual tires as they rotate. Any rapid acceleration change, could potentially be used to determine whether the car has lost traction due and why.

They tested the new tires out at a (1/3rd mile) test track on top of a Fiat factory, using Audi A8 automobiles and 5G. Unclear why this had to wait for 5G but it’s possible that using 5G, the Cyber Tyre and the car could possibly log and transmit such information back to the manufacturer of the car or tire.

Accelerometers have become dirt cheap over the last decade as smart phones have taken off. So, it was only a matter of time before they found use in new and interesting applications and the Cyber Tyre is just the latest.

Internet of Vehicles

Presumably the car, with Cyber Tyres on it, communicates road hazard information to other cars using 5G and vehicle to vehicle (V2V) communication protocols or perhaps to municipal or state authorities. This way highway signage could display hazardous conditions ahead.

Audi has a website devoted to Car to X communications which has embedded certain Audi vehicles (A4, A5 & Q7), with cellular communications, cameras and other sensors used to identify (recognize) signage, hazards, and other information and communicate this data to other Audi vehicles. This way owning an Audi, would plug you into this information flow.

Pirelli’s Cyber Car Concept

Prior to the Cyber Tyre, Pirelli introduced a Cyber Car concept that is supposedly rolling out this year. This version has tyres with real time pressure, temperature, (static) vertical load and a Tyre ID. Pirelli has been working with car manufacturers to roll out Cyber Car functionality.

The Tyre ID seems to be a file that can include anything that the tyre or automobile manufacturer wants. It sort of reminds me of a blockchain data blocks that could be used to validate tyre manufacturing provenance.

The vertical load sensor seems more important to car and tire manufacturers than consumers. But for electrical car owners, knowing car weight could help determine current battery load and thereby more precisely know how much charge is left in a battery.

Pirelli uses a proprietary algorithm to determine tread wear. This makes use of the other tyre sensors to predict wear and perhaps uses an AI DL algorithm to do this.

~~~

ABS has been around for decades now and tire pressure sensors for over 10 years or so. My latest car has enough sensors to pretty much drive itself on the highway but not quite park itself as of yet. So it was only a matter of time before something like smart tires would show up.

But given their integration with car electronics systems, it would seem that this would only make sense for new cars that included a full set of Cyber Tyres. That is until all tire AND car manufacturers agreed to come up with a standard protocol to communicate such information. When that happens, consumers could chose any tire manufacturer and obtain have similar if not the same functionality from them.

I suppose someone had to be first to identify just what could be done with the electronics available today. Pirelli just happens to be it for now in the tire industry.

I just don’t want to have to upgrade tires every 24 months. And, if I have to wait a long time for my car to boot up and establish communications with my tires, I may just take a (dumb) bike.

Photo Credit(s):

Clouds an existential threat – part 2

Recall that in part 1, we discussed most of the threats posed by clouds to both hardware and software IT vendors. In that post we talked about some of the more common ways that vendors are trying to head off this threat (for now).

In this post we want to talk about some uncommon ways to deal with the coming cloud apocalypse.

But first just to put the cloud threat in perspective, the IT TAM is estimated, by one major consulting firm, to be a ~$3.8T in 2019 with a growth rate of 3.7% Y/Y. The same number for public cloud spending, is ~$214B in 2019, growing by 17.5% Y/Y. If both growth rates continue (a BIG if), public cloud services spend will constitute all (~98.7%) of IT TAM in ~24 years from now. No nobody would predict those growth rates will continue but it’s pretty evident the growth trends are going the wrong way for (non-public cloud) IT vendors.

There are probably an infinite number of ways to deal with the cloud. But outside of the common ones we discussed in part 1, only a dozen or so seem feasible to me and even less are fairly viable for present IT vendors.

  • Move to the edge and IoT.
  • Make data center as easy and cheap to use as the cloud
  • Focus on low-latency, high data throughput, and high performing work and applications
  • Move 100% into services
  • Move into robotics

The edge has legs

Probably the first one we should point out would be to start selling hardware and software to support the edge. Speaking in financial terms, the IoT/Edge market is estimated to be $754B in 2019, and growing by over a 15.4% CAGR ).

So we are talking about serious money. At the moment the edge is a very diverse environment from cameras, sensors and moveable devices. And everybody seems to be in the act, big industrial firms, small startups and everyone in between. Given this diversity it’s hard to see that IT vendors could make a decent return here. But given its great diversity, one could say it’s ripe for consolidation.

And the edge could use some reference architectures where there are devices at the extreme edge, concentrators at the edge, more higher concentrators at nodes and more at the core, etc. So there’s a look and feel to it that seems like Ro/Bo – central core hub and spoke architectures, only on steroids with leaf proliferation that can’t be stopped. And all that data coming in has to be classified, acted upon and understood.

There are plenty of other big industrial suppliers in this IoT/edge field but none seem to have the IT end of the market that Hitachi Vantara can claim to. Some sort of combination of a large IT vendor and a large industrial firm could potentially do the same

However, Hitachi Vantara seems to be focusing on the software side of the edge. This may be an artifact of Hitachi family of companies dynamics. But it seems to be leaving some potential sales on the table.

Hitachi Vantara has the advantage of being into industrial technology in a big way so the products they create operate in factories, rail yards, ship yards and other industrial sites around the world already. So, adding IoT and edge capabilities to their portfolio is a natural extension of this expertise.

There are a few vendors going into the Edge/IoT in a small way, but no one vendor personifies this approach more than Hitachi Vantara. The Hitachi family of companies has a long and varied history in OT (operational technology) or industrial technology. And over the last many years, HDS and now Hitachi Vantara, have been pivoting their organization to focus more on IoT and edge solutions and seem to have made IOT, OT and the edge, a central part of their overall strategy.

So there’s plenty of money to be made with IoT/Edge hardware and software, one just has to go after it in a big way and there’s lots of competition. But all the competition seems to be on the same playing field (unlike the public cloud playing field).

Getting to “data center as a cloud”

There are a number of reasons why customers migrate work to the cloud, ease of use, ease of storage, ease of scale, access to myriad applications, access to multi-regional data centers, CAPex financial model, to name just a few.

There’s nothing that says much of this couldn’t be provided at the data center. It’s mostly just a lot of open source software and a lot of common hardware. IT vendors can do this sort of work if they put their vast resources to go after it.

From the pure software side, there are a couple of companies trying to do this namely VMware and Nutanix but (IBM) RedHat, (Dell) Pivotal, HPE Simplivity and others are also going after this approach.

Hardware wise CI and HCI, seem to be rudimentary steps towards common hardware that’s easy to deploy, operate and support. But these baby steps aren’t enough. And delivery to deployment in weeks is never going to get them there. If Amazon can deliver books, mattresses, bicycles, etc in a couple of days. IT vendors should be able to do the same with some select set of common hardware and have it automatically deployable in seconds to minutes once powered on.

And operating these systems has to be drastically simplified. On any public cloud there’s really no tuning required, almost minimal configuration, and then it’s just load your data and go. Yes there’s a market place to select, (virtual) hardware, (virtual) storage hardware, (virtual) networking hardware, (virtual server) O/S and (virtual?) open source applications.

Yes there’s a lots of software behind all that virtualization. And it’s fundamentally different than today’s virtualized systems. It’s made to operate only on commodity hardware and only with open source software.

The CAPex financial model is less of a problem. Today. I find many vendors are offering their hardware (and some software) on a CAPex, pay as you go model. More of this needs to be made available but the IT vendors see this, and are already aggressively moving in this direction.

The clouds are not standing still what with Azure Stack, AWS and GCP all starting to provideversions of their stack on prem in the enterprise. This looks to be a strategic battleground between the clouds and IT vendors.

Making everything IT can do in the cloud available in the data center, with common hardware and software and with the speed and ease of deployment, operations and support (maintenance) should be on every IT vendors to do list.

Unfortunately, this is not going to stop the public cloud completely, but it has the potential to slow the growth rate. But time is short, momentum has moved to the public cloud and I don’t (yet) see the urgency of the IT vendors to make this transition happen today.

Focus on low-latency, high data throughput and high performance work

This is somewhat unfair as all the IT vendors are already involved in these markets in a big way. But, there are some trends here, that indicate this low-latency market will be even more important over time.

For example, more and more of commercial IT is starting to take advantage of big data and AI to profit from all their data. And big science is starting to migrate to IT, where massive data flows and data analysis tools are becoming important to the data center. If anything, the emergence of IoT and the edge will increase data flows that need to be analyzed, understood, and ultimately dealt with.

DNA genomics may be relegated to big pharma/medical but 3D visualization is becoming so mainstream that I can do it on my desktop. These sorts of things were relegated to HPC/big science just a decade or so ago. What tools exist in HPC today that the IT data center of the future will deam a necessary part of their application workload.

Is this a sizable TAM, probably not today. In all honesty it’s buried somewhere in the IT TAM above. But it can be a growing niche, where IT vendors can stake a defensive position and the cloud may have a tough time dislodging.

I say the cloud “may have trouble dislodging” because nothing says that the entire data flow/work flow couldn’t migrate to the cloud, if the responsiveness was available there. But, if anything (guaranteed) responsiveness is one of the few achilles heels of the public cloud. Security may be the other one.

We see IBM, Intel, and a few others taking this space seriously. But all IT vendors need to see where they can do better here.

Focus on services

This not really out-of-box thinking. Some (old) IT vendors have been moving into services for over 50 years now others are just seeing there’s money to be made here. Just about every IT vendor has deployment & support services. most hardware have break-fix services.

But standalone IT services are more specialized and in the coming cloud apocalypse, services will revolve around implementing cloud applications and functionality or migrating work from the cloud or (rarely in the future) back to on prem.

TAM for services is buried in the total IT spend but industry analysts estimate that in 2019 total worldwide TAM for IT services will be about $1.0 in 2019 and growing by 2.6% CAGR.

So services are already a significant portion of IT spend today. And will probably not be impacted by the move to the cloud. I’d say that because implementing applications and services will still exist as long as the cloud exists. Yes it may get simpler (better frameworks, containerization, systemization), but it won’t ever go away completely.

Robots, the endgame

Ok laugh now. I understand this is a big ask to think that Robot spending could supplement and maybe someday surpass IT spending. But we all have to think long term. What is a self driving car but a robotic data center on wheels, generating TB of data every day it’s driven.

Robots over the next century will invade every space, become ever present and ever necessary to modern world functioning . They will have sophisticated onboard computing, motors, servos, sensors and on board and backend processing requirements. The real low-latency workload of the future will be in the (computing) minds of robots.

Even if the data center moves entirely to the cloud, all robotic computation will never reside there because A) it’s too real time and B) it needs to operate well even disconnected from the Internet.

Is all this going to happen in the next 10 or 20 years, maybe not but 30 to 50 years out this world will have a multitude of robots operating within it. .

Who’s going to develop, manufacture, support and sustain these mobile computing data centers on wheels, legs, slithering and flying bodies?

I would say IT vendors of today are uniquely positioned to dominate this market. Here to the industry is very fragmented today. There are a few industrial robotic companies and just about every major auto manufacturer is going after self driving cars. And there are many bit players today. So it’s ripe for disruption and consolidation. .

Yet, none of the major IT vendors seem to be going after this. Ok Amazon (hardware & software) and Microsoft (software) have done work in this arena. If anything this should tell IT vendors that they need to start working here as well.

But alas, none have taken up the mantle. In the mean time robot startups are biting the dust left and right, trying to gain market traction.

~~~~

That seems to be about it for the major viable out of the box approaches to the public cloud threat. I have a few other ideas but none seem as useful as the above.

Let me know what you think.

Picture credit(s):

New website monetization approaches

Historically, websites have made money by selling wares, services or advertising. In the last two weeks it seems like two new business models are starting to emerge. One more publicly supported and the other less publicly supported.

Europe’s new copyright law

According to an article I read recently (This newly approved European copyright law might break the Internet), Article 11 of Europe’s new Copyright Directive (not quite law yet) will require search engines, news aggregators and other users of Internet content to pay a “link tax” to copyright holders of anything they link to. As a long time blogger, podcaster and content provider, I find this new copyright policy very intriguing.

The article proposes that this will bankrupt small publishers as larger ones will charge less for the traffic. But presently, I get nothing for links to my content. And, I’d be delighted to get any amount – in fact I’d match any large publishers link tax amount that the market demands.

But my main concern is the impact this might have on site traffic. If aggregators pay a link tax, why would they want to use content that charges any tax. Yes at some point aggregators need content. But there are many websites full of content, certainly there would be some willing to forego tax fees for more traffic.

I also happen to be a copyright user. Most of my blog posts are from articles I read on the web. I usually link to an article in the 1st one or two paragraphs (see above and below) of a post and may refer (and link) to more that go deeper into a subject. Will I have to pay a link tax to the content owner?

How much of a link tax is anyone’s guess. I’m not sure it would amount to much. But a link tax, if done judiciously might even raise the quality of the content on the web.

Browser’s of the world, lay down your blockchains

The second article was a recent research paper (Digging into browser based crypto mining). Researchers at RWTH Aachen University had developed a new method to associate mined blocks to mining pools as a way to unearth browser-based mined crypto coins. With this technique they estimated that 1.8% of all Monero coins were mined by CoinHive using participant browsers to mine the coin or ~$250K/month from browser mining.

I see this as steeling compute power. But with that much coin being generated, it might be a reasonable way for an honest website to make some cash from people browsing their web pages. The browsing party would need to be informed of the mining operation in the page’s information, sort of like “we use cookies” today.

Just think, someone creates a WP plugin to do ETH mining and when activated, a WP website pops up a message that says “We mine coins while you browse – OK?”.

In another twist perhaps the websites could share the ETH mined on their browser with the person doing the browsing, similar to airline/hotel travel awards. Today most travel is done on corporate dime, but awards go to the person doing the traveling. Similarly, employees could browse using corporate computers but they would keep a portion of the ETH that’s mined while they browse away… Sounds like a deal.

Other monetization approaches

We’ve tried Google AdSense and other advertising but it only generated pennies a month. So, it wasn’t worth it.

We also sell research and occasionally someone buys some (see SCI Research Shop). And I do sell services but not through my website.

~~~

Not sure a link tax will fly. It would be a race to the bottom and anyone that charged a tax would suffer from less links until they decided to charge a $0 link tax.

Maybe if every link had a tax associated with it, whether the site owner wanted it or not there could be a level playing field. Recording, paying/receiving and accounting for all these link tax micro payments would be another nightmare altogether.

But a WP plugin, that announces and mines crypto coins with a user’s approval and splits the profit with them might work. Corporate wouldn’t like it but employees would just be browsing websites, where’s the harm in that.

Browse a website and share the mined crypto coin with site owner. Sounds fine to me.

Photo Credit(s): Strasburg – European Parliament|Giorgio Barlocco

Crypto News Daily – Telegram cancels ICO…

Photo of Bitcoin, Etherium and Litecoin|QuoteInspector