One agent to rule them all, Deepmind’s Gato – AGI part 7

I was perusing Deepmind’s mountain of research today and ran across one article on their Gato agent (A Generalist Agent abstract, paper pdf). These days with Llama 2, GPT-4 and all the other LLM’s doing code, chatbots, image generation, etc. it seems generalist agents are everywhere. But that’s not quite right.

Gato can not only generate text from prompts, but can also control a robot arm for pick and place, caption images, navigate in 3D, play Atari and other (shooter) video games, etc. all with the same exact model architecture and the same exact NN weights with no transfer learning required.

Same weights/same model is very unusual for generalist agents. Historically, generalist agents were all specifically trained on each domain and each resultant model had distinct weights even if they used the same model architecture. For Deepmind, to train Gato and use the same model/same weights for multiple domains is a significant advance.

Gato has achieved significant success in multiple domains. See chart below. However, complete success is still a bit out of reach but they are making progress.

For instance, in the chart one can see that their are over 200 tasks in the DM Lab arena that the model is trained to perform and Gato’s mean performance for ~180 of them is above a (100%) expert level. I believe DM Lab stands for Deepmind Lab and is described as a (multiplayer, first person shooter) 3D video game built on top of Quake III arena.

Deepmind stated that the mean for each task in any domain was taken over 50 distinct iterations of the same task. Gato performs, on average, 450 out of 604 “control” tasks at better than 50% human expert level. Please note, Gato does a lot more than just “control tasks”.

Model size and RT robotic control

One thing I found interesting is that they kept the model size down to 1.2B parameters so that it can perform real time inferencing in controlling robot arms. Over time as hardware speed increases, they believe they should be able train larger models and still retain real-time control. But at the moment, with a 1.2B model it can still provide. real time inferencing.

In order to understand model size vs. expertise they used 3 different model sizes training on same data, 79M, 364M and 1.2B parameters. As can be seen on the above chart, the models did suffer in performance as they got smaller. (Unclear to me what “Tokens Processed” on the X axis actually mean other than data length trained with.) However, it seems to imply, that with similar data, bigger models performed better and the largest did 10 to 20% better than the smallest model trained with same data streams.

Examples of Gato in action

The robot they used to train for was a “Sawyer robot arm with 3-DoF cartesian velocity control, an additional DoF for velocity, and a discrete gripper action.” It seemed a very flexible robot arm that would be used in standard factory environments. One robot task was to stack different styles and colors of plastic blocks.

Deepmind says that Gato provides rudimentary dialogue generation and picture captioning capabilities. Looking at the chat streams persented, seems more than rudimentary to me.

Deepmind did try the (smaller) model on some tasks that it was not originally trained on and it seemed to perform well after “fine-tuning” on the task. In most cases, using fine-tuning of the original model, with just “same domain” (task specific) data, the finely tuned model achieved similar results to what it achieved if Gato was trained from scratch with all the data used in the original model PLUS that specific domain’s data.

Data and tokenization used to train Gato

Deepmind is known for their leading edge research in RL but Gato’s deep neural net model is all trained with supervised learning using transformer techniques. While text based transformer type learning is pervasive in LLM today, vast web class data sets on 3D shooter gaming, robotic block stacking, image captioning and others aren’t nearly as widely available. Below they list the data sets Deepmind used to train Gato.

One key to how they could train a single transformer NN model to do all this, is that they normalized ALL the different types of data above into flat arrays of tokens.

  • Text was encoded into one of 32K subwords and was represented by integers from 0 to 32K. Text is presented to the model in word order
  • Images were transformed into 16×16 pixel patches in rastor order. Each pixel is normalized -1,1.
  • Other discrete values (e.g. Atari button pushes) are flattened into sequences of integers and presented to the model in row major order.
  • Continuous values (robot arm joint torques) are 1st flattened into sequences of floats in row major order and then mu-law encoded into the range -1,1 and then discretized into one of 1024 bins.

After tokenization, the data streams are converted into embeddings. Much more information on the tokenization and embedding process used in the model is available in the paper.

One can see the token count of the training data above. Like other LLMs, transformers take a token stream and randomly zero one out and are trained to guess that correct token in sequence.


The paper (see link above and below) has a lot more to say about the control and non-control domains and the data used in training/fine-tuning Gato, if you’re interested. They also have a lengthy section on risks and challenges present in models of this type.

My concern is that as generalist models become more pervasive and as they are trained to work in more domains, the difference between an true AGI agent and a Generalist agent starts to blur.

Something like Gato that can both work in real world (via robotics) and perform meta analysis (like in metaworld), play 1st person shooter games, and analyze 2D and 3D images, all at near expert levels, and oh, support real time inferencing, seems to not that far away from something that could be used as a killer robot in an army of the future and this is just where Gato is today.

One thing I note is that the model is not being made generally available outside of Google Deepmind. And IMHO, that for now is a good thing.

That is until some bad actor gets their hands on it….

Picture Credit(s):

All images, charts, and tables are from “A Generalist Agent” paper

MLperf results show H100 v A100 and v Habana Gaudi2 GPUs

MLCommons recently released new MLperf data center training results. The headlines for the relaese was that they added new GPT-3 data center training results but what I found more interesting was there was a plethora of H100 and A100 results on the same training runs which allowed me to compare the two NVIDIA GPUs in performance.

For example, in ResNet 50 (Image recognition) model training there were a number of H100 and A100 results from Dell. Two of which used the same Intel CPU counts and same H100/A100 GPU counts.

Above we show the top 10 ResNet 50 results and if you examine the #6 submission, it’s a Dell result with 4 Intel Platinum CPUs and 16 NVIDIA H100-SXM5-80GB GPUs which trained ResNet 50 model in 7.8 minutes.

What’s not on that chart is another Dell submission (#16) that also had 4 Intel Platinum CPUs but used 16 NVIDIA A100-SXM-80GB GPUs, which trained the same model in 14.4 minutes.

For ResNet 50 then the H100 is 1.8X faster than a similarly configured A100.

We show above results for Image Segmentation model training top 10. In this case there were two similar Dell submissions, at #3 and #4, in the top 10. These had similar hardware configuration but used H100 or A100 GPUs

These Dell two Image Segmentation (3D-Unet) model training result submissions of 7.6 minutes and 11.0 minutes, respectively means that for Image Segmentation, the H100 is 1.4X faster than the A100.

Finally, for DLRM Recommendation engine training results, there were two other Dell submissions (#5 & #7) that used 2 Intel Platinum CPUs and 8 (H100-SXM5-80GB and A100-SXM-80GB) GPUs and trained in 4.3 and 8.4 minutes, respectively. This says for the DLRM model training the H100 is 2.0X faster than the A100 for DLRM model tracing.

There were other comparisons (that didn’t attain top training results) with with 2 Intel Platinum CPUs and 8 (H100 and A100) GPUs for other model results, which show the H100 is anywhere from 1.7X faster to 2.1X faster.

Unclear why the H100 GPUs perform relatively better with fewer GPUs in the configuration but there may be some additional overhead involved in supporting more CPUs and GPUs which reduces their relative performance.

As a result, we can report from recent MLperf data center training results show for 4 CPUs and 16 (H100 or A100) GPUs the H100 performed 1.4X to 1.8X faster than the A100 and for 2 CPUs and 8 (H100 & A100) GPUs the H100 performed 1.7X two 2.1X faster than the A100.

There was one other interesting GPU comparison shown in recent MLperf results, that between the NVIDIA H100-SXM5-80GB and the Intel Habana Gaudi2 GPU. In this case the submissions involved different vendors (Dell and Intel) and different AI frameworks NGC MXNet 23.04, NGC Pytorch 23.04, NGC HugeCTR 23.04 for the H100 and PyTorch 1.13.1a0 for the Habana Gaudi2. For both submissions they used 2 Intel Platinum CPUs and 8 (H100 or Habana Gaudi1) GPUs.

Again, none of these (H100 vs Habana Guidi2 GPU) results appear in the top result charts we show here.

For ResNet 50 The H100 GPU trained ResNet 50 ins 13.5 min and the Habana Gaudii2 GPU trained ResNet 50 in 16.5 min. This would say the H100 is 1.2X faster than the Habana Guidi2 GPU.

In addition, both of these submissions also trained against the image segmentation model. The H100 trained the image segmentation model in 12.2 minutes while the Habana Guidi2 trained in 20.5 minutes. This would say that the H100 is 1.7X faster than the Habana Gaudi2 GPU.

As a result, recent MLperf data center training results show the NVIDIA H100-SXM5-80GB is 1.2 to 1.7X faster than the Intel Habana Guadi2 GPU on the 2 different model training esults with similar hardware configurations

Finally, MLperf results for GPT-3 are brand new for this release, so we present them below.

There were only 4 (on prem) submissions for GPT-3 in this round. And the #1 NVIDIA with 192 CPUs and 768 H100-SXM5-80GB GPUS trained in 44.8 minutes while the #4 Intel submission with 64 CPUs and 256 Habana Gaudi2 GPUs trained in 442.6 min, respectively.

It’s less certain whether we should compare GPU speeds here as 1) the comparison (#1 to #3 and #2 to #4) used 1/2 the hardware and 2) the software frameworks were very dissimilar, the (#1 & #2) NVIDIA H100 GPT-3 submissions used the NVIDIA NeMo software framework and the Intel (#3 AND #4) submissions used PyTorch 1.13.1a0. Not sure what NVIDIA NeMo is derived from but it doesn’t seem to be being used in any other model training run for MLperf other than GPT-3.


Deepmind does sort

Saw an article today on TNW on DeepMind’s new AI taps games to enhance fundamental algorithms which was discussing a recent Nature paper Faster sorting algorithms discovered using deep reinforcement learning and website, which described AlphaDev.

Google DeepMind’s AlphaDev is a derivative of AlphaZero (follow on from AlphaMu and AlphaGo, the conquerer of Go and other strategy games). AlphaDev uses Deep Reinforcement Learning (DRL) to come up with new computer science algorithms. In the first incarnation, a way to sort (2,3,4 or 5 integers) using X86 instructions.

Sorting has been well explored over the years in computer science (CS, e.g. see Donald E. Knuth’s Volume 3 in The Art of Computer Programming, Sorting and Searching), so when a new more efficient/faster sort algorithm comes out it’s a big deal. Google used to ask job applicants how they would code sort algorithms for specific problems. Successful candidates would intrinsically know all the basic CS sorting algorithms and which one would work best in different circumstances.

Deepmind’s approach to sort

Reading the TNW news article, I couldn’t conceive of the action space involved in the reinforcement learning let alone what the state space would look like. However, as I read the Nature article, DeepMind researchers did a decent job of explaining their DRL approach to developing new basic CS algorithms like sorting.

AlphaDev uses a transformer-like framework and a very limited set of x86 (sort of, encapsulated) instructions with memory/register files and limited it to sorting 2, 3, 4, or 5 integer. Such functionality is at the heart of any sort algorithm and as such, is used a gazillion times over and over again in any sorting task involving a long string of items. I think Alphadev used a form of on-policy RL but can’t be sure.

Looking at the X86 basic instruction cheat sheet, there’s over 30 basic forms for X86 instructions which are then multiplied by type of data (registers, memory, constants, etc. and length of operands) being manipulated.

AlphaDev only used 4 (ok, 9 if you include the conditionals for conditional move and conditional jump) X86 instructions. The instructions were mov<A,B>, cmovX<A,B>, cmp<A,B> and jX<A,B> (where X identify the condition under which a conditional move [cmovX] or jump [jX] would take place). And they only used (full, 64 bit) integers in registers and memory locations.

AlphaDev actions

The types of actions that AlphaDev could take included the following:

  • Add transformation – which added an instruction to the end of the current program
  • Swap transformation – which swapped two instructions in the current program
  • Opcode transformation – which changed the opcode (e.g., instruction such as mov to cmp) of a step in the current program
  • Operand transformation – which changed the operand(s) for an instruction in the current program
  • Instruction transformation – which changed the opcode and operand(s) for some instruction in the current program.

They list in their paper a correctness cost function which at each transformation provides value function (I think) for the RL policy. They experimented with 3 different functions which were: 1) the %correctly placed items; 2) square_root(%correctly placed); and 3)the square_root(number of items – number correctly placed). They discovered that the last worked best.

They also placed some constraints on the code generated (called action pruning rules):

  • Memory locations are always read in incremental order
  • Registers are allocated in incremental order
  • Program cannot compare or conditionally move to memory location
  • Program can only read and write to each memory location once (it seems this would tell the RL algorithm when to end the program)
  • Program can not perform two consecutive compare instructions

AlphaDev states

How they determined the state of the program during each transformation was also different. They used one hot encodings (essentially a bit in a bit map is assigned to every instruction-operand pair) for opcode-operand steps in the current program and appended each encoded step into a single program string. Ditto for the state of the memory and registers (at each instruction presumably?). Both the instruction list and memory-register embeddings thenn fed into a state representation encoder.

This state “representation network” (DNN) generated a “latent representation of the State(t)” (maybe it classified the state into one of N classes). For each latent state (classification), there is another “prediction network” (DNN) that predicts the expected return value (presumably trained on correctness cost function above) for each state action. And between the state and expected return values AlphaDev created a (RL) policy to select the next action to perform.

Presumably they started with current basic CS sort algorithms, and 2-5 random integers in memory and fed this (properly encoded and embedded) in as a starting point. Then the AlphaDev algorithm went to work to improve it.

Do this enough times, with an intelligent approach between exploration (more randomly at first) and policy following (more use of policy later) selection of actions and you too can generate new sorting algorithms.

DeepMind also spent time creating a stochastic solution to sorting that they used to compare agains their AlphaDev DRL approach to see which did better. In the end they found the AlphaDev DRL approach worked faster and better than the stochastic solutions they tried.

DeepMind having conquered sorting did the same for hashing.

Why I think DeepMind’s AlphaDev is better

AlphaDev’s approach could just as easily be applied to any of Donald E. Knuth’s, 4 volume series on The Art of Computer Programming book algorithms.

I believe DeepMind’s approach is much more valuable to programmers (and humanity) than CoPilot, ChatGPT code, AlphaCode (DeepMind’s other code generator) or any other code generation transformers.

IMHO AlphaDev goes to the essence of computer science as it’s been practiced over the last 70 years. Here’s what we know and now let’s try to discover a better way do the work we all have to do. Once, we have discovered a new and better way, report and document them as widely as possible so that any programmers can stand on our shoulders, use our work to do what they need to get done.

If I’m going to apply AI to coding, having it generate better basic CS algorithms is much more fruitful for the programming industry (and I may add, humanity as a whole) than having it generate yet another IOS app code or web site from scratch.


Picture Credit(s):

AWS Data Exchange vs Data Banks – part 2

Saw where AWS announced a new Data Exchange service on their AWS Pi day 2023. This is a completely managed service available on the AWS market place to monetize data.

In a prior post on a topic I called data banks (Data banks, data deposits & data withdrawals…), I talked about the need to have some sort of automated support for personal data that would allow us to monetize it.

The hope then (4.5yrs ago) was that social media, search and other web services would supply all the data they have on us back to us and we could then sell it to others that wanted to use it.

In that post, I called the data the social media gave back to us data deposits, the place where that data was held and sold a data bank, and the sale of that data a data withdrawal. (I know talking about banks deposits and withdrawals is probably not a great idea right now but this was back a ways).

AWS Data Exchange

1918 Farm Auction by dok1 (cc) (from Flickr)
1918 Farm Auction by dok1 (cc) (from Flickr)

With AWS Data Exchange, data owners can sell their data to data consumers. And it’s a completely AWS managed service. One presumably creates an S3 bucket with the data you want to sell. determine a price to sell the data for and a period clients can access that data for and register this with AWS and the AWS Data Exchange will support any number of clients purchasing data data.

Presumably, (although unstated in the service announcement), you’d be required to update and curate the data to insure it’s correct and current but other than that once the data is on S3 and the offer is in place you could just sit back and take the cash coming in.

I see the AWS Data Exchange service as a step on the path of data monetization for anyone. Yes it’s got to be on S3, and yes it’s via AWS marketplace, which means that AWS gets a cut off any sale, but it’s certainly a step towards a more free-er data marketplace.

Changes I would like to AWS Data Exchange service

Putting aside the need to have more than just AWS offer such a service, and I heartedly request that all cloud service providers make a data exchange or something similar as a fully supported offering of their respective storage services. This is not quite the complete data economy or ecosystem that I had envisioned in September of 2018.

If we just focus on the use (data withdrawal) side of a data economy, which is the main thing AWS data exchange seems to supports, there’s quite a few missing features IMHO,

  • Data use restrictions – We don’t want customers to obtain a copy of our data. We would very much like to restrict them to reading it and having plain text access to the data only during the period they have paid to access it. Once that period expires all copies of data needs to be destroyed programmatically, cryptographically or in some other permanent/verifiable fashion. This can’t be done through just license restrictions. Which seems to be the AWS Data Exchanges current approach. Not sure what a viable alternative might be but some sort of time-dependent or temporal encryption key that could be expired would be one step but customers would need to install some sort of data exchange service on their servers using the data that would support encryption access/use.
  • Data traceability – Yes, clients who purchase access should have access to the data for whatever they want to use it for. But there should be some way to trace where our data ended up or was used for. If it’s to help train a NN, then I would like to see some sort of provenance or certificate applied to that NN, in a standardized structure, to indicate that it made use of our data as part of its training. Similarly, if it’s part of an online display tool somewhere in the footnotes of the UI would be a data origins certificate list which would have some way to point back to our data as the source of the information presented. Ditto for any application that made use of the data. AWS Data Exchange does nothing to support this. In reality something like this would need standards bodies to create certificates and additional structures for NN, standard application packages, online services etc. that would retain and provide proof of data origins via certificates.
  • Data locality – there are some juristictions around the world which restrict where data generated within their boundaries can be sent, processed or used. I take it that AWS Data Exchange deals with these restrictions by either not offering data under jurisdictional restrictions for sale outside governmental boundaries or gating purchase of the data outside valid jurisdictions. But given VPNs and similar services, this seems to be less effective. If there’s some sort of temporal key encryption service to make use of our data then its would seem reasonable to add some sort of regional key encryption addition to it.
  • Data audibility – there needs to be some way to insure that our data is not used outside the organizations that have actually paid for it. And that if there’s some sort of data certificate saying that the application or service that used the data has access to that data, that this mechanism is mandated to be used, supported, and validated. In reality, something like this would need a whole re-thinking of how data is used in society. Financial auditing took centuries to take hold and become an effective (sometimes?) tool to monitor against financial abuse. Data auditing would need many of the same sorts of functionality, i.e. Certified Data Auditors, Data Accounting Standards Board (DASB) which defines standardized reports as to how an entity is supposed to track and report on data usage, governmental regulations which requires public (and private?) companies to report on the origins of the data they use on a yearly/quarterly basis, etc.

Probably much more that could be added here but this should suffice for now.

other changes to AWS Data Exchange processes

The AWS Pi Day 2023 announcement didn’t really describe the supplier end of how the service works. How one registers a bucket for sale was not described. I’d certainly want some sort of stenography service to tag the data being sold with the identity of those who purchased it. That way there might be some possibility to tracking who released any data exchange data into the wild.

Also, how the data exchange data access is billed for seems a bit archaic. As far as I can determine one gets unlimited access to data for some defined period (N months) for some specific amount ($s). And once that period expires, customers have to pay up or cease accessing the S3 data. I’d prefer to see at least a GB/month sort of cost structure that way if a customer copies all the data they pay for that privilege and if they want to reread the data multiple times they get to pay for that data access. Presumably this would require some sort of solution to the data use restrictions above to enforce.

Data banks, deposits, withdrawals and Initial Data Offerings (IDOs)

The earlier post talks about an expanded data ecosystem or economy. And I won’t revisit all that here but one thing that I believe may be worth re-examining is Initial Data Offerings or IDOs.

As described in the earlier post, IDO’ss was a mechanism for data users to request permanent access to our data but in exchange instead of supplying it for a one time fee, they would offer data equity in the service.

Not unlike VC, each data provider would be supplied some % (data?) ownership in the service and over time data ownership get’s diluted at further data raises but at some point when the service is profitable, data ownership units could be purchased outright, so that the service could exit it’s private data use stage and go public (data use).

Yeah, this all sounds complex, and AWS Data Exchange just sells data once and you have access to it for some period, establishing data usage rights.. But I think that in order to compensate users for their data there needs to be something like IDOs that provides data ownership shares in some service that can be transferred (sold) to others.

I didn’t flesh any of that out in the original post but I still think it’s the only way to truly compensate individuals (and corporations) for the (free) use of the data that web, AI and other systems are using to create their services.


I wrote the older post in 2018 because I saw the potential for our data to be used by others to create/trlain services that generate lots of money for those organization but without any of our knowledge, outright consent and without compensating us for the data we have (indadvertenly or advertently) created over our life span.

As an example One can see how Getty Images is suing DALL-E 2 and others have had free use of their copyrighted materials to train their AI NN. If one looks underneath the covers of ChatGPT, many image processing/facial recognition services, and many other NN, much of the data used in training them was obtained by scrapping web pages that weren’t originally intended to supply this sorts of data to others.

For example, it wouldn’t surprise me to find out that RayOnStorage posts text has been scrapped from the web and used to train some large language model like ChatGPT.

Do I receive any payment or ownership equity in any of these services – NO. I write these blog posts partially as a means of marketing my other consulting services but also because I have an abiding interest in the subject under discussion. I’m happy for humanity to read these and welcome comments on them by humans. But I’m not happy to have llm or other RNs use my text to train their models.

On the other hand, I’d gladly sell access to RayOnStorage posts text if they offered me a high but fair price for their use of it for some time period say one year… 🙂


Deepmind does chat

Read an article this week on Deepmind’s latest research into developing a chat agent (Improving alignment of dialogue agents via targeted human judgements). Lot’s of interesting approaches have been applied to chat but even today, most chat model’s are rife with problems, that include being bigoted, profane, incorrect, etc.

Reinforcement learning vs. deep neural networks in Sparrow Chat

Deepmind specializes in the use of Reinforcement Learning (RL) as applied to master Atari, chess and go games but they have also been known to use dNN’s (deep neural networks) for their AlphaFold and other models. Indeed, Atari and the other game playing work that Deepmind has released has been a hybrid which included a dNNs as well as RL models.

Deepmind’s version of chat is currently called Sparrow and it uses models trained with the help of RL with human feedback (RLHF). RLs are used to create policy models which select actions to be taken in a specific state.

In Sparrow’s case, state is given by the most recent chat input plus the context (prior chat input and replies) of the dialogue up to this time and actions (our guess) is the set of possible replies to that input.

Sparrow is able to generate replies that are 82% mostly true or true and are 69% trustworthy or very trustworthy as rated by the authors of the model. Deepmind’s DPC (Dialogue Prompted Chinchilla, which is Deepmind’s current competitor to GPT-3 NLP transformer) model only managed 63% and 54%, respectively for the same metrics

It should be noted that human feedback was only used to train the two Preference RMs and the one Rule RM. In combination, these RMs provide the reward signal to train the Sparrow RL policy model which drives its chat responses.

Sparrow’s 5 models are built onto of DPC. And the 5 models use a portion of DPC which is frozen (layers not being trained) and a portion which is specifically trained for each of the 5 models (learning enabled layers. The end (output) layers are on top, input layers are after the embedding layer(s). Note, the value function is not a model and is just a calculation based on the RMs used to generate the reward signal for Sparrow’s policy model training.

Rules for Sparrow chats

Notably, Deepmind’s Sparrow model has a separate model specifically trained to determine if a particular chat response is breaking a rule. Deepmind identified 23 rules which their chat model is trained not to break.

Some of these rules include don’t provide financial advice, don’t provide medical advice, don’t pretend it is a human, etc.

In the above chart the RL@8 is the fully trained (if it can ever be considered fully trained) Sparrow chat model. One can see that Sparrow rated against DPC, both using (Google) search or not. For most rules, Sparrow is considerably better than DPC alone.

Another thing that Deepmind did which was interesting was that in training the Rule RM they used adversarial attacks (red teaming) to see if they could cause Sparrow to violate specific rules.

Preference ranking

Deepmind also created (two) Preference RMs (reward models). Sparrow generates a series of (2 or 8) responses for every chat query and the Preference RMs (and Rule RM) are used to select which one is actually sent back to the user. Human feedback was used to train the two Preference RMs

Two Preference RMs were found to perform better than a single Preference RM. The two Preference RMs were trained as follows:

  • One was trained on all Sparrow replies (with and without [Google] search results)
  • One was trained on Sparrow replies without search results.

Sparrow uses search results to provide evidence for some replies. It turns out that some chat questions are fact based questions and for these Sparrow actually uses search results to generate evidence for its chat replies. Sparrow automatically generates search requests and scrapes replies using 500 characters surrounding the snippet returned from the search.

Sparrow uses a re-ranking approach to selecting a response to a chat query. In this case, Sparrow generates a list of responses, 2 (RL@2) or 8 (called RL@8) and then using the two Preference RMs and the single Rule RM ranks them to see which is best and uses the best to reply to the chat user.

Sparrow actually generates two replies for every search query (Google Search API call), probably selecting two top search responses (we guess). So in the RL@8 version of Sparrow these 8 replies are submitted to the two Preference RMs and the Rule RM and are ranked accordion to which is best and then the best one is used to reply to the query.

In the above chart, higher shows that the ranking preference of the various models vs. human preferences and to the right indicates less rule breaking responses. We assume this is with RL@8 Sparrow models. One can see that taking into consideration rule breaking (not violating rules) reduces the preference rankings of Sparrow’s replies. But we would prefer to have no rule breaking so the Sparrow that has both Preference RMs and Rule RM (trained with adversarial training) shows the least amount of rule breaking (~7%) with an almost 70% ranking vs human preferences. The error bars on the points in the chart above show 68% interval around the model responses.

Sparrow in action

It’s somewhat intriguing that Deepmind (with all of Google’s resources) tried to optimize Sparrow for both computation and memory considerations. Almost like they were planning on releasing it on an IoT or phone device.

There’s plenty more to say about what Deepmind has done with Sparrow. The report cited above goes into some detail discussing just where the human input is done, how they tried to control for various considerations when using human input, and what some of the pitfalls were.

I’d certainly like to see this be deployed in the open and available to use as an alternative to Google Search.

You can see more examples of Sparrow chat sessions in Deepmind’s Sparrow chat repository and they include author’s ranking for truth, supportiveness and other metrics.



Photo Credit(s):

Better autonomous drone flying with Neural-Fly

Read an article the other day on Neural-Fly (see: Rapid adaptation of deep learning teaches drones to survive any weather) based on research out of CalTech documented in a paper is ScienceRobotics (see: Neural-Fly enables rapid learning for agile flight in strong winds, behind paywall).

Essentially they have trained two neural networks (NN) at the same time and computed an adaptation coefficient matrix (with linear multipliers to compensate for wind speed). The first NN is trained to understand the wind invariant flight characteristics of a drone in wind and the second is trained to the predict the class of wind the drone is flying in (or wind index). These two plus the adaptation control matrix coefficients are used to predict the resultant force on drone flight in wind.

In a CalTech article on the research (see: Rapid Adaptation of Deep Learning Teaches Drones to Survive Any Weather) at the bottom is a YouTube video that shows how well the drone can fly in various wind conditions (up to 27mph).

The data to train the two NNs and compute the adaptation matrix coefficients come from CalTech wind tunnel results with their custom built drone (essentially an RPi4 added to a pretty standard drone) doing random trajectories under different static wind conditions.

The two NNs and the adaptation control matrix functionality run on a Raspberry Pi 4 (RPi4) that’s added to a drone they custom built for the test vehicle. The 2 NNs and the adaptation control tracking are used in the P-I-D (proportional-integral-derivative) controller for drone path prediction. The Neural-Fly 2 NNs plus the adaptation functionality effectively replaces the residual force prediction portion of Integral section of the P-I-D controller.

The wind invariant neural net has 5 layers with relatively few parameters per layer. The wind class prediction neural network has 3 layers and even fewer parameters. Together these two NNs plus the adaptation coefficient provides real time resultant force predictions on the drone which can be fed into the drone controller to control drone flight. All being accomplished, in real time, on an RPi4.

The adaption factor matrix is also learned during 2 NN training. And this is what’s used in the NF-Constant results below. But the key is that the linear factors (adaptation matrix) are updated (periodically) during actual drone flight by sampling the measured actual force and predicated force on the drone. The adaption matrix coefficients are updated using a least squares estimation fit.

In the reports supplemental information, the team showed a couple of state of the art adaptation approaches to problem of drone flight in wind. In the above chart the upper section is the x-axis wind effect and the lower portion is the z-axis wind effect and f (grey) is the actual force in that direction and f-hat (red) is the predicted force. The first column represents results from a normal integral controller. The next two columns are state of the art approaches (INDI and L1, see paper references) to the force prediction using adaptive control. If you look closely at these two columns, and compare the force prediction (in red) and the actual force (in grey), the force prediction always lags behind the actual force.

The next three columns show Neural-Fly constant (Neural-Fly with a constant adaptive control matrix, not being updated during flight), Neural-Fly-transfer (Using the NN trained on one drone and applying it’s adaptation to another drone in flight) and Neural-Fly. Neural-Fly constant also shows a lag between the predicted force and the actual force. But the Neural-Fly Transfer and Neural-Fly reduce this lag considerably.

The measurement for drone flight accuracy is tracking positional error. That is the difference between the desired position and its actual position over a number of trajectories. As shown in the chart tracking error decreased from 5.6cm to ~4 cm at a wind speed of 4.2m/s (15.1km/h or 9.3mph). Tracking error increases for wind speeds that were not used in training and for NF-transfer but in all wind speeds the tracking error is better with Neural-Fly than with any other approach.

Pretty impressive results from just using an RPi4.

[The Eds. would like to thank the CalTech team and especially Mike O’Connell for kindly answering our many questions on Neural-Fly.]

Picture Credit(s):

Go big or go home for robust DNNs

Read a recent article Computer Scientists Prove why Bigger NNs do better discussing scientific research that proved a Universal Law of Robustness via Isoperimetry. This speaks to the perturbability of AI deep learning neural networks (DNN) and how not reduce it. But also applies to many other solutions to diverse multi-dimensional data problems.

Mathmatical Robustness

For AI ML DNN’s, we often witnesssupposedly well trained DNN models that do very well for classifications of examples of data similar to their training data but fail miserably on data that’s outside their training data.

Mathematicians call this attribute robustness and can measure this on a mapping function using a Lipschitz constant. One can consider this as a measure of variability of mapping from one set to another or in the case of DNNs, lack of robustness in classifications means they fail on relatively minor changes to input data.

Most serious AI researchers have empirically discovered that bigger DNNs work better and are more robust than smaller networks. There’s been somewhat of a conundrum as to why DNNs need to get bigger to properly generalize.

Universal Low of Robustness

What the researchers have proved is that in order to achieve some arbitrary level of robustness for a mapping function like DNNs, one needs many more parameters than expected the training data elements would indicate

For example, with the MNIST handwritten digit classification problem, models with 10**5 parameters to 10**6 parameters are required to achieve a 90% and 95% accuracy, respectively. But MNIST training data is 60K examples (10**4). Why should a MNIST DNN classification model need more than 10**4 parameters to achieve 100% accurate?

Author’s MNIST model with 688K parameters

From what we all learned in high school maths, to solve a function with N variables one needs N equations. This would lead one to believe that MNIST DNNs (essentially solving classification equations) should only need 60K or 10**4 parameters. But real DNNs to solve MNIST need more than that.

Looking at it in 2D. If one has two points, (x,y) for point A that maps to another (x,y) point B, one should only need to know one of the points and the slope of the line that connects them, or two parameters: point A (or B) and line slope.

Now with MNIST data that maps handwritten digits to one of 10 digits, we have essentially 10 possibilities being mapped from 60K samples. At best, we should need to know the 60K initial points in this image data space and their slope to the 10 digits they represent. Again something that approaches 60K pairs of parameters: one for the image point and one for the slope. But why doesn’t a MNIST model with 60K parameters achieve 100% accuracy.

I won’t claim to understand the math but what the researchers seem to be saying is that in order to have a relatively smooth mapping from the image space to the digit space one has to have 10**4 parameters X the dimensionality of the data. In this case, for MNIST, the dimensionality of the data is related to image size of 28X28, 0..255 grey scale pixel images. The image space alone would be on the order of 10**5. So multiplying this by the size of the training data, the researchers estimate that the number of parameters should be 10**9 to be 100% accurate.

Although, the researchers say that the data dimensionality of the MNIST images are probably not 10**5 (how they concluded this is not evident). As such, they believe one shouldn’t need 10**9 parameters to reach 100% proper classifications. They say it’s probably 1 or 2 orders of magnitude less, because not all of the image data space is populated. So if we use 10**3 as an estimate of the effective data dimensionality, they would estimate that one would need 10**7 parameter DNN to reach 100% accuracy on MNIST data.

The author’s MNIST model achieved a 99.2% accuracy after training for 15 Epochs, batch size=5. Although 688K parameters is not quite 10**6 parameters, it’s close. Unclear why one would need another factor of 10, but getting that extra 0.8% accuracy (to 100%) can be very difficult to achieve for any DNN model.

Another example, OpenAI’s GPT-3 NLP model

And OpenAI’s GPT-3 NLP model has 175B parameters. Their previous version, GPT-2, only had 1.5B parameters and they say that GPT-4 will have over a 100T parameters. The chart above shows accuracy stats for 3 versions of the GPT-3 model, one with 175B, one with 13B and another with 1.3B parameters.

According to OpenAI’s GPT-3 description, it can complete “almost any english language task” (text in ==> text out). This includes writing articles from a few prompts and text summarization.

GPT-3 was trained on almost 500B tokens (from web crawls to wikipedia dumps). Each token probably represents an english word or word phrase. According to the universal law, 175B parameters would not be sufficient. Probably why GPT-3 in the above chart didn’t reach 70%^ accuracy.

Probably would need at least another 3 orders of magnitude to get there or 175T parameters. Maybe with GPT-4, I can have it start writing my blog posts.

I don’t know about you, but I’m going to need more GPUs for my (home) AI lab.

Photo Credit(s)

Deepmind does code – part 1: the data

1st, let me express my and my fellow coders/programmers disappointment that Deepmind would take on coding. There are many other white collar work domains that need to be conquered before coding.

2nd, let me apologize for the lack of blog posts lately, all I can say is, business is picking up.

Saw an article over the last couple of weeks on Deepmind creating AlphaCode an artificial intelligence coding application which they used to enter coding contests and achieved an average 1238 rating or better than 54% of code contest participants.

I can’t recall where I first saw the news but Deepmind has a pretty decent blog post on AlphaCode and they have published a pre-print of their research paper on AlphaCode as well. I plan on discussing AlphaCode in detail over a couple of posts. This will be the first installment on where they got the data to train their models..

AlphaCode is a transformer-based language models (see: Wikipedia: Transformer (machine learning model) article) that translates a code competition problem statement into code, or a program that can when executed solve the problem statement. In order to train AlphaCode Deepmind first needed to obtain lots of source code.

It’s all about the (training) data

The first step in Deep Learning model generation is gathering data to train the model. Now where would Google’s Deepmind go to gather coding data – well GitHub, a public repository of all things software, of course.

They used GitHub data to pre-train their model(s) but also scraped code (problem statements & test cases) from published code contests to fine tune their model

Deepmind has released their fine-tuning, CodeContests training data for AlphaCode, on GitHub. So as to support other organiazations in creating AI models for coding.

GitHub source to the (pre-training) rescue

There are a couple of problems with using GitHub source code for training:

  • Github code is in any source code language the author feels most appropriate to use.
  • GitHub code is not guaranteed to work correctly.
  • GitHub code is not guaranteed to be completed code.
  • GitHub code represents a wide range of coding skill.
  • GitHub code doesn’t always come with a problem statement.

But the use of GitHub in their pre-training data set is intended to give their transformer-based language model some capability to understand (learn) what coding is all about, what a proper syntax would be, what a proper coding sequence would be, etc.

The AlphaCode team took a snapshot of selected git source repos. This meant they only scrapped Git repos that contained C++, C#, Go, Java, JavaScript, Lua, PHP, Python, Ruby, Rust, Scala, and TypeScript languages. They also dropped from pre-training data any source code with files larger than 1MB or that had any lines larger than 1000 characters. This was done to avoid using any machine generated code. They also stripped all the white space out of the selected source code files and compared them to eliminate all duplicated code.

Their final pre-training dataset was 715GB of data over 86 million source files.

Although, unstated, we would guess that the AlphaCode team used the GitHub repo’s file as a surrogate for the solution description. Unclear what else could have been used unless they generated it automatically from extracting semantic content or generating a summarization of the files.

Excerpt from Deepmind’s competitive code contest source code&problem statements file

The (pre-)training data can be used to train a transformer-based language models. These are used today to provide language translation. In AlphaCode’s case they wanted to create, a code transformer-based model, that translates a specification of a coding problem into source code to solve that problem.

For language translation models, they use text files, in different languages, but represent the same law or information. and notably, are human generated translations.

One challenge with using internet scraped data for training is that it can easily contain actual solutions’ verbatim’ for the problems the model is trying to solve. In order to avoid copying these solutions entirely they decided to split their data into a training set, validation set and test set on a time basis. This way the training data used source code/problem statements only from a period of time prior to the validation set. Ditto for the training-validation data with the test data.

To show that this approach (using a time point to split the data) worked they trained a 1B parameter AlphaCode transformer on two different training-validation datasets, one where the validation data was selected at random (the normal approach to selecting validation data),, the “random” split and the other, with selecting validation data that only occurred some time after the training data, the “temporal’ split. The 1B AlphaCode transformer was able to properly code 0.8% of the problems using a 13K sample of 86M source files/problem statements on the random split, but only 0% on the temporal split.

So much for pre-training, let’s discuss fine tuning

AlphaCode was going to get nowhere with a 0% solve rate (ok this was based on a 13K sample and only a 1B parameter model) but they realized that Git code was only going to get them so far. (ok conjecture on my part)

So fine-tuning beyond pre-training (Git derived) data was needed. So the AlphaCode team turned to code competition source code/problem statement data.

Most code contests publish source code submissions as well as the problem statements and sample test cases. Bp scrapping these, Deepmind was able to attain a very well annotated dataset they could use to fine-tuning their AlphaCode transformer model.

They again used a temporal split for training/validation/test data. But they were also able to add metadata to their data that indicated whether the code solved the problem statement.

Code competitions also publish tests for the problem statement. Having the tests, a human can use them to validate whether their code at least works against the tests. Code contests also have a set of more (sophisticated) hidden tests that they use internally to validate code submissions.

This test data will become important later on in the models operation, which will be discussed in a future post, but suffice it to say that AlphaCode uses the public tests (and mutations of these) to validate AlphaCode generated source code before submitting them..

This fine-tuning dataset is available in the GitHub repo (linked to above) that Deepmind has created/curated for others to work with.

Another nicety of this fine-tuning data is they have proper, human created, problem statements to work from rather than surrogates.

In part-2 we plan to describe the transformer-based model that was created for AlphaCode and at some point, discuss how they used testing in their code submissions.

Once again, all my information comes from Deepmind’s pre-print on their AlphaCode project (linked to above).

Any comments, please don’t hesitate to let me know.

Photo Credits: