FAST(HARD) or Slow(soft)AGI takeoff – AGI Part 6

I was listening to a podcast a couple of weeks back and the person being interviewed made a comment that he didn’t believe that AGI would have a fast (hard) take off rather it would be slow (soft). Here’s the podcast John Carmack interviewed by Lex Fridman).

Hard vs. soft takeoff

A hard (fast) takeoff implies a relatively quick transition (seconds, hours, days, or months) between AGI levels of intelligence and super AGI levels of intelligence. A soft (slow) takeoff implies it would take a long time (years, decades, centuries) to go from AGI to super AGI.

We’ve been talking about AGI for a while now and if you want to see more about our thoughts on the topic, check out our AGI posts (in most recent order: AGI part 5, part 4, part 3 (ish), part (2), part (1), and part (0)).

The real problem is that many believe that any AGI that reaches super-intelligence will have drastic consequences for the earth and especially, for humanity. However, this is whole other debate.

The view is that a slow AGI takeoff might (?) allow sufficient time to imbue any and all (super) AGI with enough safeguards to eliminate or minimize any existential threat to humanity and life on earth (see part (1) linked above).

A fast take off won’t give humanity enough time to head off this problem and will likely result in an humanity ending and possibly, earth destroying event.

Hard vs Soft takeoff – the debate

I had always considered AGI would have a hard take off but Carmack seemed to think otherwise. His main reason is that current large transformer models (closest thing to AGI we have at the moment) are massive and take lots of special purpose (GPU/TPU/IPU) compute, lots of other compute and gobs and gobs of data to train on. Unclear what the requirements are to perform inferencing but suffice it to say it should be less.

And once AGI levels of intelligence were achieved, it would take a long time to acquire any additional regular or special purpose hardware, in secret, required to reach super AGI.

So, to just be MECE (mutually exclusive and completely exhaustive) on the topic, the reasons researchers and other have posited to show that AGI will have a soft takeoff, include:

  • AI hardware for training and inferencing AGI is specialized, costly, and acquisition of more will be hard to keep secret and as such, will take a long time to accomplish;
  • AI software algorithmic complexity needed to build better AGI systems is significantly hard (it’s taken 70yrs for humanity to reach todays much less than AGI intelligent systems) and will become exponentially harder to go beyond AGI level systems. This additional complexity will delay any take off;
  • Data availability to train AGI is humongous, hard to gather, find, & annotate properly. Finding good annotated data to go beyond AGI will be hard and will take a long time to obtain;
  • Human government and bureaucracy will slow it down and/or restrict any significant progress made in super AGI;
  • Human evolution took Ms of years to go from chimp levels of intelligence to human levels of intelligence, why would electronic evolution be 6-9 orders of magnitude faster.
  • AGI technology is taking off but the level of intelligence are relatively minor and specialized today. One could say that modern AI has been really going since the 1990s so we are 30yrs in and today have almost good AI chatbots today and AI agents that can summarize passages/articles, generate text from prompts or create art works from text. If it takes another 30 yrs to get to AGI, it should provide sufficient time to build in capabilities to limit super-AGI hard take off.

I suppose it’s best to take these one at a time.

  • Hardware acquisition difficulty – I suppose the easiest way for an intelligent agent to acquire additional hardware would be to crack cloud security and just take it. Other ways may be to obtain stolen credit card information and use these to (il)legally purchase more compute. Another approach is to optimize the current AGI algorithms to run better within the same AGI HW envelope, creating super AGI that doesn’t need any more hardware at all.
  • Software complexity growing – There’s no doubt that AGI software will be complex (although the podcast linked to above, is sub-titled that “AGI software will be simple”). But any sub-AGI agent that can change it’s code to become better or closer to AGI, should be able to figure out how not to stop at AGI levels of intelligence and just continue optimizating until it reaches some wall. i
  • Data acquisition/annotation will be hard – I tend to think the internet is the answer to any data limitations that might be present to an AGI agent. Plus, I’ve always questioned if Wikipedia and some select other databases wouldn’t be all an AGI would need to train on to attain super AGI. Current transformer models are trained on Wikipedia dumps and other data scraped from the internet. So there’s really two answers to this question, once internet access is available it’s unclear that there would be need for anymore data. And, with the data available to current transformers, it’s unclear that this isn’t already more than enough to reach super AGI
  • Human bureaucracy will prohibit it: Sadly this is the easiest to defeat. 1) there are roque governments and actors around the world with more than sufficient resources to do this on their own. And no agency, UN or otherwise, will be able to stop them. 2) unlike nuclear, the technology to do AI (AGI) is widely available to business and governments, all AI research is widely published (mostly open access nowadays) and if anything colleges/universities around the world are teaching the next round of AI scientists to take this on. 3) the benefits for being first are significant and is driving a weapons (AGI) race between organizations, companies, and countries to be first to get there.
  • Human evolution took Millions of years, why would electronic be 6-9 orders of magnitude faster – electronic computation takes microseconds to nanoseconds to perform operations and humans probably 0.1 sec, or so. Electronics is already 5 to 8 orders of magnitude faster than humans today. Yes the human brain is more than one CPU core (each neuron would be considered a computational element). But there are 64 core CPUs/4096 CORE GPUs out there today and probably one could consider similar in nature if taken in the aggregate (across a hyperscaler lets say). So, just using the speed ups above it should take anywhere from 1/1000 of a year to 1 year to cover the same computational evolution as human evolution covered between the chimp and human and accordingly between AGI and AGIx2 (ish).
  • AGI technology is taking a long time to reach, which should provide sufficient time to build in safeguards – Similar to the discussion on human bureaucracy above, with so many actors taking this on and the advantages of even a single AGI (across clusters of agents) would be significant, my guess is that the desire to be first will obviate any thoughts on putting in safeguards.

Other considerations for super AGI takeoff

Once you have one AGI trained why wouldn’t some organization, company or country deploy multiple agents. Moreover, inferencing takes orders of magnitude less computational power than training. So with 1/100-1/1000th the infrastructure, one could have a single AGI. But the real question is wouldn’t a 100- or 1000-AGis represent super intelligence?

Yes and no, 100 humans doesn’t represent super intelligence and a 1000 even less so. But humans have other desires, it’s unclear that 100 humans super focused on one task wouldn’t represent super intelligence (on that task).

Interior view of a data center with equipment

What can be done to slow AGI takeoff today

Baring something on the order of Nuclear Proliferation treaties/protocols, putting all GPUs/TPUs/IPUs on weapons export limitations AND restricting as secret, any and all AI research, nothing easily comes to mind. Of course Nuclear Proliferation isn’t looking that good at the moment, but whatever it’s current state, it has delayed proliferation over time.

One could spend time and effort slowing technology progress down. Such as by reducing next generation CPU/GPU/IPU compute cores , limiting compute speedups, reduce funding for AI research, putting a compute tax, etc. All of which, if done across the technological landscape and the whole world, could give humanity more time to build in AGI safeguards. But doing so would adversely impact all technological advancement, in healthcare, business, government, etc. And given the proliferation of current technology and the state actors working on increasing capabilities to create more, it would be hard to envision slowing technological advancement down much, if at all.

It’s almost like putting a tax on slide rules or making their granularity larger.

It could be that super AGI would independently perceive itself benignly, and only provide benefit to humanity and the earth. But, my guess is that given the number of bad actors intent on controlling the world, even if this were true, they would try to (re-)direct it to harm segments of humanity/society. And once unleashed, it would be hard to stop.

The only real solution to AGI in bad actor hands, is to educate all of humanity to value all humans and to cherish the environment we all live in as sacred. This would eliminate bad actors,

It sounds so naive, but in reality, it’s the only thing, I believe, the only way we can truly hope to get us through this AGI technological existential crisis.

Just like nuclear, we as a society will keep running into technological existential crisis’s like this. Heading all these off, with a better more all inclusive, more all embracing, and less combative humanity could help all of them.

Comments?

Picture Credits:

The Hollowing out of enterprise IT

We had a relatively long discussion yesterday, amongst a bunch of independent analysts and one topic that came up was my thesis that enterprise IT is being hollowed out by two forces pulling in opposite directions on their apps. Those forces are the cloud and the edge.

Western part of the abandoned Packard Automotive Plant in Detroit, Michigan. by Albert Duce

Cloud sirens

The siren call of the cloud for business units, developers and modern apps has been present for a long time now. And their call is more omnipresent than Odysseus ever had to deal with.

The cloud’s allure is primarily low cost-instant infrastructure that just works, a software solution/tool box that’s overflowing, with locations close to most major metropolitan areas, and the extreme ease of starting up.

If your app ever hopes to scale to meet customer demand, where else can you go. If your data can literally come in from anywhere, it usually lands on the cloud. And if you have need for modern solutions, tools, frameworks or just about anything the software world can create, there’s nowhere else with more of this than the cloud.

Pre-cloud, all those apps would have run in the enterprise or wouldn’t have run at all. And all that data would have been funneled back into the enterprise.

Not today, the cloud has it all, its siren call is getting louder everyday, ever ready to satisfy every IT desire anyone could possibly have, except for the edge.

The Edge, last bastion for onsite infrastructure

The edge sort of emerged over the last decade or so kind of in stealth mode. Yes there were always pockets of edge, with unique compute or storage needs. For example, video surveillance has been around forever but the real acceleration of edge deployments started over the last decade or so as compute and storage prices came down drastically.

These days, the data being generated is stagering and compute requirements that go along with all that data are all over the place, from a few ARMv/RISC V cores to a server farm.

For instance, CERN’s LHC creates a PB of data every second of operation (see IEEE Spectrum article, ML shaking up particle physics too). But they don’t store all that. So they use extensive compute (and ML) to try to only store interesting events.

Seismic ships roam the seas taking images of underground structures, generating gobs of data, some of which is processed on ship and the rest elsewhere. A friend of mine creates RPi enabled devices that measure tank liquid levels deployed in the field.

More recently, smart cars are like a data center on tires, rolling across roads around the world generating more data than you want can even imagine. 5G towers are data centers ontop of buildings, in farmland, and in cell towers doting the highways of today. All off the beaten path, and all places where no data center has ever gone before.

In olden days there would have been much less processing done at the edge and more in an enterprise data center. But nowadays, with the advent of relatively cheap computing and storage, data can be pre-processed, compressed, tagged all done at the edge, and then sent elsewhere for further processing (mostly done in the cloud of course).

IT Vendors at the crossroads

And what does the hollowing out of the enterprise data centers mean for IT server and storage vendors, mostly danger lies ahead. Enterprise IT hardware spend will stop growing, if it hasn’t already, and over time, shrink dramatically. It may be hard to see this today, but it’s only a matter of time.

Certainly, all these vendors can become more cloud like, on prem, offering compute and storage as a service, with various payment options to make it easier to consume. And for storage vendors, they can take advantage of their installed base by providing software versions of their systems running in the cloud that allows for easier migration and onboarding to the cloud. The server vendors have no such option. I see all the above as more of a defensive, delaying or holding action.

This is not to say the enterprise data centers will go away. Just like, mainframe and tape before them, on prem data centers will exist forever, but will be relegated to smaller and smaller, niche markets, that won’t grow anymore. But, only as long as vendor(s) continue to upgrade technology AND there’s profit to be made.

It’s just that that astronomical growth, that’s been happening ever since the middle of last century, happen in enterprise hardware anymore.

Long term life for enterprise vendors will be hard(er)

Over the long haul, some server vendors may be able to pivot to the edge. But the diversity of compute hardware there will make it difficult to generate enough volumes to make a decent profit there. However, it’s not to say that there will be 0 profits there, just less. So, when I see a Dell or HPE server, under the hood of my next smart car or inside the guts of my next drone, then and only then, will I see a path forward (or sustained revenue growth) for these guys.

For enterprise storage vendors, their future prospects look bleak in comparison. Despite the data generation and growth at the edge, I don’t see much of a role for them there. The enterprise class feature and functionality, they have spent the decades creating and nurturing aren’t valued as much in the cloud nor are they presently needed in the edge. Maybe I’m missing something here, but I just don’t see a long term play for them in the cloud or edge.

~~~~

For the record, all this is conjecture on my part. But I have always believed that if you follow where new apps are being created, there you will find a market ready to explode. And where the apps are no longer being created, there you will see a market in the throws of a slow death.

Photo Credit(s):

Data analysis of history

Read an article the other day in The Guardian (History as a giant data set: how analyzing the past could save the future), which talks about this new discipline called cliodynamics (see wikipedia cliodynamics article). There was a Nature article (in 2012), Human Cycles: History as Science, which described cliodynamics in a bit more detail.

Cliodynamics uses mathematical systems theory on historical data to predict what will happen in the future for society. According to The Guardian and Nature articles, the originator of cliodynamics, Peter Turchin, predicted in 2010 that the world would change dramatically for the worse over the coming decade, with violence peaking in 2020.

What is cliodynamics

Cliodynamics depends on vast databases of historical data that has been amassed over the last decade or so. For instance, the Seshat Global History Databank (started in 2011, has 3 datasets: moralizing gods, axial age history [8th to 3rd cent. BCE], & social complexity), International Institute of Social History (est. 1935, in 2013 re-organized their collection to focus on data, has 33 dataverses ranging from data on apprenticeships, prices and wage history, strike history of various countries and time periods, etc. ), and Google NGRAM viewer (started in 2010, provides keyword statistics on Google BOOKs).

Cliodynamics uses the information from databases like the above to devise a mathematical model of the history of the world. From their mathematical model, cliodynamics researchers have discerned patterns or cycles in human endeavors that have persisted over centuries.

Cliodynamic cycles

Two of cycles of interest come to mind:

  • Secular cycle – this plays out over 2-3 centuries and starts out with a new egalitarian society that has low levels of inequality where the supply and demand for labor are roughly equal. Over time as population grows, the supply of labor outstrips demand and inequality increases. Elites then start to battle one another, war and political instability results in a new more equal society, re-starting the cycle .
  • Fathers and sons cycle – this plays out over 50 years and starts when the (fathers) generation responds violently to social injustice and the next (sons) generation resigns itself to injustice (or hopefully resolves it) until the next (fathers) generation sees injustice again and erupts violently re-starting the cycle over again. .

It’s this last cycle that Turchin predicted to peak again in 2020, the last one peaking in 1970 and the ones before that peaking in 1920 and 1870.

We’ve seen such theories before. In the 19th and 20th centuries there were plenty of historical theorist. Probably the most prominent was Marx but there were others as well.

The problem with cliodynamics, good data

Sparsity and accuracy of data has always been a problem with historical study. Much information is lost through natural or manmade disasters and much of what’s left is biased. Nonetheless, more and more data is being amassed of a historical nature every day, most of it quantitative and suitable to analysis.

Historical data, where available, can be assessed scientifically, and analyzed by using current tools such as data analytics, machine learning, & deep learning to ascertain trends and make predictions. And the more data available, the more accurate these analyses and predictions can become. Cliodynamics pre-dates much of these tools. but that’s no excuse for not to taking advantage of them.

~~~~

As for 2020, AI, automation and globalization has led and will lead to more job disruption. Inequality is also on the rise, at least throughout much of the west. And then there’s Brexit, USA elections and general mid-east turmoil that seems to all be on the horizon.

Stay tuned, 2020 seems only months away.

Photo Credits:

From Key Historic Figures of WW1 article, Mansell/Ghetty Images, (c) ThoughtCo

Anti War March (1968 Chicago) By David Wilson , CC BY 2.0, Link

Eleven times Americans have marched on Washington, (1920, Washington DC) (c) Smithsonian Magazine

QoM1610: Will NVMe over Fabric GA in enterprise AFA by Oct’2017

NVMeNVMe over fabric (NVMeoF) was a hot topic at Flash Memory Summit last August. Facebook and others were showing off their JBOF (see my Facebook moving to JBOF post) but there were plenty of other NVMeoF offerings at the show.

NVMeoF hardware availability

When Brocade announced their Gen6 Switches they made a point of saying that both their Gen5 and Gen6 switches currently support NVMeoF protocols. In addition to Brocade’s support, in Dec 2015 Qlogic announced support for NVMeoF for select HBAs. Also, as of  July 2016, Emulex announced support for NVMeoF in their HBAs.

From an Ethernet perspective, Qlogic has a NVMe Direct NIC which supports NVMe protocol offload for iSCSI. But even without NVMe Direct, Ethernet 40GbE & 100GbE with  iWARP, RoCEv1-v2, iSCSI SER, or iSCSI RDMA all could readily support NVMeoF on Ethernet. The nice thing about NVMeoF for Ethernet is not only do you get support for iSCSI & FCoE, but CIFS/SMB and NFS as well.

InfiniBand and Omni-Path Architecture already support native RDMA, so they should already support NVMeoF.

So hardware/firmware is already available for any enterprise AFA customer to want NVMeoF for their data center storage.

NVMeoF Software

Intel claims that ~90% of the software driver functionality of NVMe is the same for NVMeoF. The primary differences between the two seem to be the NVMeoY discovery and queueing mechanisms.

There are two fabric methods that can be used to implement NVMeoF data and command transfers: capsule mode where NVMe commands and data are encapsulated in normal fabric packets or fabric dependent mode where drivers make use of native fabric memory transfer mechanisms (RDMA, …) to transfer commands and data.

12679485_245179519150700_14553389_nA (Linux) host driver for NVMeoF is currently available from Seagate. And as a result, support for NVMeoF for Linux is currently under development, and  not far from release in the next Kernel (I think). (Mellanox has a tutorial on how to compile a Linux kernel with NVMeoF driver support).

With Linux coming out, Microsoft Windows and VMware can’t be far behind. However, I could find nothing online, aside from base NVMe support, for either platform.

NVMeoF target support is another matter but with NICs/HBAs & switch hardware/firmware and drivers presently available, proprietary storage system target drivers are just a matter of time.

Boot support is a major concern. I could find no information on BIOS support for booting off of a NVMeoF AFA. Arguably, one may not need boot support for NVMeoF AFAs as they are probably not a viable target for storing App code or OS software.

From what I could tell, normal fabric multi-pathing support should work fine with NVMeoF. This should allow for HA NVMeoF storage, a critical requirement for enterprise AFA storage systems these days.

NVMeoF advantages/disadvantages

Chelsio and others have shown that NVMeoF adds ~8μsec of additional overhead beyond native NVMe SSDs, which if true would warrant implementation on all NVMe AFAs. This may or may not impact max IOPS depending on scale-ability of NVMeoF.

For instance, servers (PCIe bus hardware) typically limit the number of private NVMe SSDs to 255 or less. With an NVMeoF, one could potentially have 1000s of shared NVMe SSDs accessible to a single server. With this scale, one could have a single server attached to a scale-out NVMeoF AFA (cluster) that could supply ~4X the IOPS that a single server could perform using private NVMe storage.

Base level NVMe SSD support and protocol stacks are starting to be available for most flash vendors and operating systems such as, Linux, FreeBSD, VMware, Windows, and Solaris. If Intel’s claim of 90% common software between NVMe and NVMeoF drivers is true, then it should be a relatively easy development project to provide host NVMeoF drivers.

The need for special Ethernet hardware that supports RDMA may delay some storage vendors from implementing NVMeoF AFAs quickly. The lack of BIOS boot support may be a minor irritant in comparison.

NVMeoF forecast

AFA storage systems, as far as I can tell, are all about selling high IOPS and very-low latency IOs. It would seem that NVMeoF would offer early adopter AFA storage vendors a significant performance advantage over slower paced competition.

In previous QoM/QoW posts we have established that there are about 13 new enterprise storage systems that come out each year. Probably 80% of these will be AFA, given the current market environment.

Of the 10.4 AFA systems coming out over the next year, ~20% of these systems pride themselves on being the lowest latency solutions in the market, and thus command high margins. One would think these systems would be the first to adopt NVMeoF. But, most of these systems have their own, proprietary flash modules and do not use standard (NVMe) SSDs and can use their own proprietary interface to their proprietary flash storage. This will delay any implementation for them until they can convert their flash storage to NVMe which may take some time.

On the other hand, most (70%) of the other AFA systems, that currently use SAS/SATA SSDs, could boost their IOP counts and drastically reduce their IO  response times, by implementing NVMe SSDs and NVMeoF. But converting SAS/SATA backends to NVMe will take time and effort.

But, there are a select few (~10%) of AFA systems, that already use NVMe SSDs in their AFAs, and for these few, they would seem to have a fast track towards implementing NVMeoF. The fact that NVMeoF is supported over all fabrics and all storage interface protocols make it even easier.

Moreover, NVMeoF has been under discussion since the summer of 2015, which tells me that astute AFA vendors have already had 18+ months to develop it. With NVMeoF host drivers & hardware available since Dec. 2015, means hardware and software exist to test and validate against.

I believe that NVMeoF will be GA’d within the next 12 months by at least one enterprise AFA system. So my QoM1610 forecast for NVMeoF is YES, with a 0.83 probability.

Comments?

 

 

 

QoM1608: The coming IOT tsunami or not

Techpinions ChartSaw an interesting chart the other day in a post in TechPinions (Searching for What’s Next) showing the sales in millions over time of PCs, Tablets and Smart Phones.  From the chart, PC sales peaked 2010-2012 and that Tablet sales have at flat lined (2016). Not sure what’s projections vs. actuals but the story on SmartPhones have yet to run out and they had rapid sales growth between 2008 and 2014.

The other thing to take from this chart is that device adoption is speeding up. It took 20 years to reach peak PC sales but it only took ~10 years to reach peak Smartphones sales.
Continue reading “QoM1608: The coming IOT tsunami or not”

(QoM16-002): Will Intel Omni-Path GA in scale out enterprise storage by February 2016 – NO 0.91 probability

opa-cardQuestion of the month (QoM for February is: Will Intel Omni-Path (Architecture, OPA) GA in scale out enterprise storage by February 2016?

In this forecast enterprise storage are the major and startup vendors supplying storage to data center customers.

What is OPA?

OPA is Intel’s replacement for InfiniBand and starts out at 100Gbps. It’s intended more for high performance computing (HPC), to be used as an inter-cluster server interconnect or next generation fabric. Intel says it “will maintain consistency and compatibility with existing Intel True Scale Fabric and InfiniBand APIs by working through the open source OpenFabrics Alliance (OFA) software stack on leading Linux* distribution releases”. Seems like Intel is making it as easy as possible for vendors to adopt the technology.
Continue reading “(QoM16-002): Will Intel Omni-Path GA in scale out enterprise storage by February 2016 – NO 0.91 probability”

QoM 16-001: Will NVMe GA in enterprise storage over the next 12 months? Yes 0.68 probability

NVMeThe latest analyst forecast contest Question of the Month (QoM 16-001) is on whether NVMe PCIe-SSDs will GA in enterprise storage over the next 12 months? For more information on our analyst forecast contest, please check out the post.

There are a couple of considerations that would impact NVMe adoption.

Availability of NVMe SSDs?

Intel, Samsung, Seagate and WD-HGST are currently shipping 2.5″ & HH-HL NVMe PCIe SSDs for servers. Hynix, Toshiba, and others had samples at last year’s Flash Memory Summit and promised production early this year. So yes, they are available, from at least 3 sources now, including enterprise class storage vendors, with more coming online over the year.

Some advantages of NVMe SSDs?

Advantages of NVMe (compiled from NVMe organization and other NVMe sources):

  • Lower SSD write and read IO access latencies
  • Higher mixed IOPS performance
  • Widespread OS support (not necessarily used in storage systems
  • Lower power consumption
  • X4 PCIe support
  • NVMe over FC Fabric (new RDMA) support

Disadvantages of NVMe SSDs?

Disadvantages of NVMe (compiled from NVMe drive reviewers and other sources):

  • Smaller form factors limit (MLC) capacity SSDs
  • New cabling (U.2) for 2.5″ SSDs
  • BIOS changes to support boot from NVMe (not much of a problem in storage systems)

Not many enterprise storage vendors use PCIe Flash

Current storage vendors that use PCIe flash (sourced from web searches on PCIe flash for major storage vendors):

  • Using PCIe SSDs as part or only storage tier
    • Kamanario K2 all flash array
    • NexGen storage hybrid storage
  • NetApp (PCIe) FlashCache
  • Others (?2) with Volatile cache backed by PCIe SSDs
  • Others (?2) using PCIe SSD as Non-volatile cache

Only a few of these will have new storage hardware out over the next 12 months. I estimated (earlier) about 1/3 of current storage vendors will release new hardware over the next 12 months.

The advantages of NVMe don’t matter as much unless you have a lot of PCIe flash in your system, so the 2 vendors above that use PCIe SSDs as storage are probably most likely to move to NVMe, but the limited size of NVMe drives, the meagre performance speed up to storage available from NVMe, may make NVMe adoption less likely.  So maybe there’s a 0.3 probability * 1/3 (of vendors with hardware refresh) * 2 (vendors using PCIe flash as storage) or ~0.2.

For the other 5 candidates listed above, the advantages for NVMe aren’t that significant, so if they are refreshing their hardware, there’s maybe a low chance that they will take on NVMe, mainly because it’s going to become the prominent PCIe flash protocol, So maybe that adds another 0.15 of probability * 1/3 * 5 or ~0.25. (When I originally formulated the NVMe QoM I had not anticipated NVMe SSDs backing up volatile cache but they certainly exist, today.)

Other potential candidate for NVMe are all start ups. EMC DSSD uses PCIe fabric for it’s NAND support, and could already be making use of NVMe. (Although, I would  not classify DSSD as an enterprise storage vendor.)

But there may be other start ups out there using PCIe flash that would consider moving to NVMe. A while back, I estimated there’s ~3 startups likely to emerge over the next year. It’s almost a certainty that they would all have some sort of flash storage., but maybe only one of them would make use of PCIe SSDs. And it’s unclear whether they would use NVMe drives as main storage or for caching. So, splitting the difference in probabilities, we will use 0.23 probability * 1 or ~0.23.

So total up my forecast we forecast for NVMe adoption in GA enterprise storage hardware over the next 12 months to be Yes with 0.68 probability. 

The other likely candidates that will support NVMe are software defined storage or hyper converged storage. I don’t list these as enterprise storage vendors but I could be convinced that this was a mistake. If I add in SW defined storage the probability goes up, to high 0.80s to low 0.90s.

Comments?