Million year optical disk

Read an article the other day about scientists creating an optical disk that would be readable in a million years or so. The article in Science Mag titled A million – year hard disk was intended to warn people about potential dangers in the way future that were being created today.

A while back I wrote about a 1000 year archive which was predominantly about disappearing formats. At the time, I believed given the growth in data density that information could easily be copied and saved over time but the formats for that data would be long gone by the time someone tried to read it.

The million year optical disk eliminates the format problem by using pixelated images etched on media. Which works just dandy if you happen to have a microscope handy.

Why would you need a million year disk

The problem is how do you warn people in the far future not to mess with radioactive waste deposits buried below. If the waste is radioactive for a million years, you need something around to tell people to keep away from it.

Stone markers last for a few thousand years at best but get overgrown and wear down in time. For instance, my grandmother’s tombstone in Northern Italy has already been worn down so much that it’s almost unreadable. And that’s not even 80 yrs old yet.

But a sapphire hard disk that could easily be read with any serviceable microscope might do the job.

How to create a million year disk

This new disk is similar to the old StorageTek 100K year optical tape. Both would depend on microscopic impressions, something like bits physically marked on media.

For the optical disk the bits are created by etching a sapphire platter with platinum. Apparently the prototype costs €25K but they’re hoping the prices go down with production.

There are actually two 20cm (7.9in) wide disks that are molecularly fused together and each disk can store 40K miniaturized pages that can hold text or images. They are doing accelerated life testing on the sapphire disks by bathing them in acid to insure a 10M year life for the media and message.

Presumably the images are grey tone (or in this case platinum tone). If I assume 100Kbytes per page that’s about 4GB, something around a single layer DVD disk in a much larger form factor.

Why sapphire

It appears that sapphire is available from industrial processes and it seems impervious to wear that harms other material. But that’s what they are trying to prove.

Unclear why the decided to “molecularly” fuse two platters together. It seems to me this could easily be a weak link in the technology over the course of dozen millennia or so. On the other hand, more storage is always a good thing.


In the end, creating dangers today that last millions of years requires some serious thought about how to warn future generations.

Image: Clock of the Long Now by Arenamontanus

Gamma ray optics promise nuclear waste mitigation

Scientists report (see AAAS reportWired article or actual research)  that they are now able to refract or focus gamma rays. Contrary to theory, they have discovered that gamma rays can be deflected by the nucleus of a silicon atom.

Down a bit in the article they said that the mystery deflecting gamma rays seems to be the creation of  “virtual electron” electron&anti-electron pairs in the nucleus. The deflection is something ~1.000000001 not much yet, but the belief is that even heavier elements such as gold will refract gamma rays even better.

Gamma-ray and gamma ray bursts are typically evidence of extremely energetic explosions witnessed in distant galaxies. They are the most luminous electromagnetic events in the universe. Most gamma ray bursts are released during supernova explosions when a star violently collapses.

But what can you do with Gamma ray optics?

The possibility of gamma ray optical systems introduces a whole new way of looking at the universe.  For example, the introduction of x-rays in the early 1900s created an entirely new way to see inside the human body, never before possible. It’s unclear what gamma ray optics or a G-ray machine will do for medicine or human health but it’s certain that such devices will be better able to “see” processes and objects impossible to detect today.

One item of interest was the promise that someday, gamma ray optics will be able to render harmless, radioactive isotopes such as nuclear waste.  Somehow a focused gamma ray beam at the proper (neutron binding energy) wavelength could be used to “evaporate” or remove neutrons from an atomic nucleus and by doing so render it less lethal.  How this works on Kg of material versus a single atom is another question.

Also, gamma ray optics could be used in the future to potentially create designer radioactive isotopes for medical diagnostics and therapy.  Even higher resolution nuclear spectroscopy is envisioned by using gamma ray optics.


I don’t know about nuclear waste, but if gamma ray optics could transmute lead into gold, we might have something.  This probably means that someday, gamma ray optics will be able to store information in an atomic nucleus and that would certainly take data density out of the magnetic domain altogether.

Image: Tycho’s Star Shines in Gamma Rays