Transporter, a private Dropbox in a tower

Move over DropboxBox and all you synch&share wannabees, there’s a new synch and share in town.

At SFD7 last month, we were visiting with Connected Data where CEO, Geoff Barrell was telling us all about what was wrong with today’s cloud storage solutions. In front of all the participants was this strange, blue glowing device. As it turns out, Connected Data’s main product is the File Transporter, which is a private file synch and share solution.

All the participants were given a new, 1TB Transporter system to take home. It was an interesting sight to see a dozen of these Transporter towers sitting in front of all the bloggers.

I was quickly, established a new account, installed the software, and activated the client service. I must admit, I took it upon myself to “claim” just about all of the Transporter towers as the other bloggers were still paying attention to the presentation.  Sigh, they later made me give back (unclaim) all but mine, but for a minute there I had about 10TB of synch and share space at my disposal.

Transporters rule

transporterB2So what is it. The Transporter is both a device and an Internet service, where you own the storage and networking hardware.

The home-office version comes as a 1 or 2TB 2.5” hard drive, in a tower configuration that plugs into a base module. The base module runs a secured version of Linux and their synch and share control software.

As tower power on, it connects to the Internet and invokes the Transporter control service. This service identifies the node, who owns it, and provides access to the storage on the Transporter to all desktops, laptops, and mobile applications that have access to it.

At initiation of the client service on a desktop/laptop it creates (by default) a new Transporter directory (folder). Files that are placed in this directory are automatically synched to the Transporter tower and then synchronized to any and all online client devices that have claimed the tower.

Apparently you can have multiple towers that are claimed to the same account. I personally tested up to 10 ;/ and it didn’t appear as if there was any substantive limit beyond that but I’m sure there’s some maximum count somewhere.

A couple of nice things about the tower. It’s your’s so you can move it to any location you want. That means, you could take it with you to your hotel or other remote offices and have a local synch point.

Also, initial synchronization can take place over your local network so it can occur as fast as your LAN can handle it. I remember the first time I up-synched 40GB to DropBox, it seemed to take weeks to complete and then took less time to down-synch for my laptop but still days of time. With the tower on my local network, I can synch my data much faster and then take the tower with me to my other office location and have a local synch datastore. (I may have to start taking mine to conferences. Howard (, co-host on our  GreyBeards on Storage podcast) had his operating in all the subsequent SFD7 sessions.

The Transporter also allows sharing of data. Steve immediately started sharing all the presentations on his Transporter service so the bloggers could access the data in real time.

They call the Transporter a private cloud but in my view, it’s more a private synch and share service.

Transporter heritage

The Transporter people were all familiar to the SFD crowd as they were formerly with  Drobo which was at a previous SFD sessions (see SFD1). And like Drobo, you can install any 2.5″ disk drive in your Transporter and it will work.

There’s workgroup and business class versions of the Transporter storage system. The workgroup versions are desktop configurations (looks very much like a Drobo box) that support up to 8TB or 12TB supporting 15 or 30 users respectively.  The also have two business class, rack mounted appliances that have up to 12TB or 24TB each and support 75 or 150 users each. The business class solution has onboard SSDs for meta-data acceleration. Similar to the Transporter tower, the workgroup and business class appliances are bring your own disk drives.

Connected Data’s presentation

transporterA1Geoff’s discussion (see SFD7 video) was a tour of the cloud storage business model. His view was that most of these companies are losing money. In fact, even Amazon S3/Glacier appears to be bleeding money, although this may not stop Amazon. Of course, DropBox and other synch and share services all depend on cloud storage for their datastores. So, the lack of a viable, profitable business model threatens all of these services in the long run.

But the business model is different when a customer owns the storage. Here the customer owns the actual storage cost. The only thing that Connected Data provides is the client software and the internet service that runs it. Pricing for the 1TB and 2TB transporters with disk drives are $150 and $240.

Having a Transporter

One thing I don’t like is the lack of data-at-rest encryption. They use TLS for data transfers across your LAN and the Internet. But the nice thing about having possession of the actual storage is that you can move it around. But the downside is that you may move it to less secure environments (like conference hotel rooms). And as with the any disk storage, someone can come up to the device and steel the disk. Whether the data would be easily recognizable is another question but having it be encrypted would put that question to rest. There’s some indication on the Transporter support site that encryption may be coming for the business class solution. But nothing was said about the Transporter tower.

On the Mac, the Transporter folder has the shared folders as direct links (real sub-folders) but the local data is under a Transporter Library soft link. It turns out to be a hidden file (“.Transporter Library”) under the Transporter folder. When you Control click on this file your are given the option to view deleted files. You can also do this with shared files as well.

One problem with synch and share services is once someone in your collaboration group deletes some shared files they are gone (over time) from all other group users. Even if some of them wanted them. Transporter makes it a bit easier to view these files and save them elsewhere. But I assume at some point they have to be purged to free up space.

When I first installed the Transporter, it showed up as a network node on my finder shared servers. But the latest desktop version (3.1.17) has removed this.

Also some of the bloggers complained about files seeing files “in flux” or duplicates of the shared files but with unusual file suffixes appended to them, such as ” filename124224_f367b3b1-63fa-4d29-8d7b-a534e0323389.jpg”. Enrico (@ESignoretti) opened up a support ticket on this and it’s supposedly been fixed in the latest desktop and was a temporary filename used only during upload and should have been deleted-renamed after the upload was completed. I just uploaded 22MB with about 40 files and didn’t see any of this.

I really want encryption as I wanted one transporter in a remote office and another in the home office with everything synched locally and then I would hand carry the remote one to the other location. But without encryption this isn’t going to work for me. So I guess I will limit myself to just one and move it around to wherever I want to my data to go.

Here are some of the other blog posts by SFD7 participants on Transporter:

Storage field day 7 – day 2 – Connected Data by Dan Firth (@PenguinPunk)

File Transporter, private Synch&Share made easy by Enrico Signoretti (@ESignoretti)

Transporter – Storage Field Day 7 preview by Keith Townsend (@VirtualizedGeek)


The wizardry of StorMagic

We talked with Hans O’Sullivan, CEO and Chris Farey, CTO of StorMagic during Storage Field Days 6 (SFD6, view videos of their session) a couple of weeks back and they presented some interesting technology, at least to me.

Their SvSAN, software defined storage  solution has been around since 2009, and was originally intended to provide shared storage for SMB environments but was changed in 2011 to focus more on remote offices/branch offices (ROBO) for larger customers.

What makes the SvSAN such an appealing solution is that it’s a software-only storage solution that can use a minimum of 2 servers to provide a high availability, shared block storage cluster which can all be managed from one central site. Their SvSAN installs as a virtual storage appliance that runs as a virtual machine under a hypervisor and you can assign it to manage as much or as little of the direct access or SAN attached storage available to the server.

SvSAN customers

As of last count they had 30K licenses, in 64 countries, across 6 continents, were managing over 57PB of data, and had one (large retail) customer with over 2000 sites managed from one central location.  They had pictures of one customer in their presentation which judging by the color was obvious who it was but they couldn’t actually say.

One customer with a 1000’s of sites had prior storage that was causing 100’s of store outages a year, each of which averaged 6 hours to recover which cost them $6K each. Failure cost could be much larger and much longer, if there was a data loss.  They obviously needed a much more reliable storage system and wanted to reduce their cost of maintenance. Turning to SvSAN saved them lot’s of $s and time and eliminated their maintenance downtime.

Their largest vertical is retail but StorMagic does well in most ROBO environments which have limited IT staff, and limited data requirements. Other verticals they mentioned included defense (they specifically mentioned the German Army who have a parachute deployable, all-SSD SvSAN storage/data center), manufacturing (with small remote factories), government with numerous sites around the world, financial services (banks with many remote offices), restaurant and hotel chains, large energy companies, wind farms, etc.  Hans mentioned one a large wind farm operator that said their “field” data centers were so remote it took 6 days to get someone out to them to solve a problem but they needed 600GBs of shared storage to manage the complex.

SvSAN architecture

SvSAN uses synchronous mirroring between pairs of servers so that the data is constantly available in both servers of a pair. Presumably the amount of storage available to the SvSAN VSA’s running in the two servers have to be similar in capacity and performance.

An SvSAN cluster can grow by adding pairs of servers or by adding storage to an already present SvSAN cluster. One can have as many pairs of servers in an SvSAN local cluster as you want (probably some maximum here but I can’t recall what they said). The cluster interconnect is 1GbE or 10GbE. Most (~90%) of SvSAN implementations are under 2TB of data but their largest single clustered configuration is 200TB.

SvSAN supplies iSCSI storage services and runs inside a Linux virtual machine. But SvSAN can support both bare metal as well as virtualized server environments.

All the storage within a server that is assigned to SvSAN is pooled together and carved out as iSCSI virtual disks.  SvSAN can make use of raid controller with JBODs, DAS or even SAN storage, anything that is accessible to a virtual machine can be configured as part of SvSAN’s storage pool.

Servers that are accessing the shared iSCSI storage may access either of the servers in a synchronous mirrored pair. As it’s a synchronous mirror, any writes written to one of the servers is automatically mirrored to the other side before an acknowledgement is sent back to the host. Synchronous mirroring depends on multi-pathing software at the host.

As in any solution that supports active-active read-write access there is a need for a Quorum service to be hosted somewhere in the environment. Hopefully, at some location distinct from where a problem could potentially occur, but it doesn’t have to be. In StorMagic’s case this could reside on any physical server, even in the same environment. The Quorum service is there to decide which of the two copies is “more” current when there is some sort of split brain scenario. That is when the two servers in a synchronized pair lose communication with one another. At that point the Quorum service declares one dead and the other active and from that point on all IO activity must be done through the active SvSAN server. The Quorum service can also run on Linux or Windows and remotely or locally. Any configuration changes will need to be communicated to the Quorum service.

They have a bare metal recovery solution. Specifically, when one server fails, customers can ship out another server with a matching configuration to be installed in the remote site. When the new server comes up, it auto-configures it’s storage and networking by using the currently active server in the environment and starts a resynchronization process with that server. Which all means it can be brought up into a high availability mode with almost no IT support other than what it takes to power the server and connect some networking ports. This was made for ROBO!

Code upgrades can be done by taking one of the pair of servers down and loading the new code and resynching it’s data. Then once resynch completes you can do the same with the other server.

They support a fast-resynch service for when one of the pair goes down for any reason. At that point the active server starts tracking any changes that occur in a journal and when the other server comes up it just resends the changes that have occurred since the last time it was up.

SvSAN has support for SSDs and just released an SSD write back caching feature to help improve disk write speeds. They also support an all SSD configuration for harsh environments.

StorMagic also offers an option for non-mirrored disk but I can’t imagine why anyone would use it.

They can dynamically move one mirrored iSCSI volume from one pair of servers to another, without disrupting application activity.

Minimum hardware configuration requires a single core server but can use as many cores that you can give it. StorMagic commented that a single core maxes out at 50-60K IOPS but you can always just add more cores to the solution.

The SvSAN cluster can be managed in VMware vCenter or Microsoft System Center (MSSC) and it maintains statistics which help monitor the storage clusters in the remote office environments.

They also have a scripted recipe to help bring up multiple duplicate remote sites where local staff only need to plug in minimal networking and some storage information and they are ready to go.

SvSAN pricing and other information

Their product lists for 2 servers and 2TB of data storage is $2K and they have standard license options for 4, 8, and 16TB across a server pair after which it’s unlimited amounts of storage for the same price of $10K. This doesn’t include hardware or physical data storage this is just for the SvSAN software and management.

They offer a free 60 day evaluation license on their website (see link above).

There was a lot of twitter traffic and onsite discussion as to how this compared to HP’s StorVirtual VSA solution. The contention was that StorVirtual required more nodes but there was no-one from HP there to dispute this.

Didn’t hear much about snapshot, thin provisioning, remote replication, deduplication or encryption. But for ROBO office environments, that are typically under 2TB most of these features are probably overkill, especially when there’s no permanent onsite IT staff to support the local storage environment.


I had talked with StorMagic previously at one or more of the storage/IT conferences we have attended at the past and had relegated them to SMB  storage solutions. But after talking with them at SFD6, their solution became quite clearer. All of the sophisticated functionality they have developed together with their software only solution, seems to be  very appealing solution for these ROBO environments.




Windows Server 2012 R2 storage changes announced at TechEd

Microsoft TechEd Trends driving IT todayMicrosoft TechEd USA is this week and they announced a number of changes to the storage services that come with Windows Server 2012 R2

  • Azure DRaaS – Microsoft is attempting to democratize DR by supporting a new DR-as-a-Service (DRaaS).  They now have an Azure service that operates in conjunction with Windows Server 2012 R2 that provides orchestration and automation for DR site failover and fail back to/from remote sites.  Windows Server 2012 R2 uses Hyper-V Replica to replicate data across to the other site. Azure DRaaS supports DR plans (scripts) to identify groups of Hyper-V VMs which need to be brought up and their sequencing. VMs within a script group are brought up in parallel but different groups are brought up in sequence.  You can have multiple DR plans, just select the one to execute. You must have access to Azure to use this service. Azure DR plans can pause for manual activities and have the ability to invoke PowerShell scripts for more fine tuned control.  There’s also quite a lot of setup that must be done, e.g. configure Hyper-V hosts, VMs and networking at both primary and secondary locations.  Network IP injection is done via mapping primary to secondary site IP addresses. The Azzure DRaaS really just provides the orchestration of failover or fallback activity. Moreover, it looks like Azure DRaaS is going to be offered by service providers as well as private companies. Currently, Azure’s DRaaS has no support for SAN/NAS replication but they are working with vendors to supply an SRM-like API to provide this.
  • Hyper-V Replica changes – Replica support has been changed from a single fixed asynchronous replication interval (5 minutes) to being able to select one of 3 intervals: 15 seconds; 5 minutes; or 30 minutes.
  • Storage Spaces Automatic Tiering – With SSDs and regular rotating disk in your DAS (or JBOD) configuration , Windows Server 2012 R2 supports automatic storage tiering. At Spaces configuration time one dedicates a certain portion of SSD storage to tiering.  There is a scheduled Windows Server 2012 task which is then used to scan the previous periods file activity and identify which file segments (=1MB in size) that should be on SSD and which should not. Then over time file segments are moved to an  appropriate tier and then, performance should improve.  This only applies to file data and files can be pinned to a particular tier for more fine grained control.
  • Storage Spaces Write-Back cache – Another alternative is to dedicate a certain portion of SSDs in a Space to write caching. When enabled, writes to a Space will be cached first in SSD and then destaged out to rotating disk.  This should speed up write performance.  Both write back cache and storage tiering can be enabled for the same Space. But your SSD storage must be partitioned between the two. Something about funneling all write activity to SSDs just doesn’t make sense to me?!
  • Storage Spaces dual parity – Spaces previously supported mirrored storage and single parity but now also offers dual parity for DAS.  Sort of like RAID6 in protection but they didn’t mention the word RAID at all.  Spaces dual parity does have a write penalty (parity update) and Microsoft suggests using it only for archive or heavy read IO.
  • SMB3.1 performance improvements of ~50% – SMB has been on a roll lately and R2 is no exception. Microsoft indicated that SMB direct using a RAM DISK as backend storage can sustain up to a million 8KB IOPS. Also, with an all-flash JBOD, using a mirrored Spaces for backend storage, SMB3.1 can sustain ~600K IOPS.  Presumably these were all read IOPS.
  • SMB3.1 logging improvements – Changes were made to SMB3.1 event logging to try to eliminate the need for detail tracing to support debug. This is an ongoing activity but one which is starting to bear fruit.
  • SMB3.1 CSV performance rebalancing – Now as one adds cluster nodes,  Cluster Shared Volume (CSV) control nodes will spread out across new nodes in order to balance CSV IO across the whole cluster.
  • SMB1 stack can be (finally) fully removed – If you are running Windows Server 2012, you no longer need to install the SMB1 stack.  It can be completely removed. Of course, if you have some downlevel servers or clients you may want to keep SMB1 around a bit longer but it’s no longer required for Server 2012 R2.
  • Hyper-V Live Migration changes – Live migration can now take advantage of SMB direct and its SMB3 support of RDMA/RoCE to radically speed up data center live migration. Also, Live Migration can now optionally compress the data on the current Hyper-V host, send compressed data across the LAN and then decompress it at target host.  So with R2 you have three options to perform VM Live Migration traditional, SMB direct or compressed.
  • Hyper-V IO limits – Hyper-V hosts can now limit the amount of IOPS consumed by each VM.  This can be hierarchically controlled providing increased flexibility. For example one can identify a group of VMs and have a IO limit for the whole group, but each individual VM can also have an IO limit, and the group limit can be smaller than the sum of the individual VM limits.
  • Hyper-V supports VSS backup for Linux VMs – Windows Server 2012 R2 has now added support for non-application consistent VSS backups for Linux VMs.
  • Hyper-V Replica Cascade Replication – In Windows Server 2012, Hyper V replicas could be copied from one data center to another. But now with R2 those replicas at a secondary site can be copied to a third, cascading the replication from the first to the second and then the third data center, each with their own replication schedule.
  • Hyper-V VHDX file resizing – With Windows Server 2012 R2 VHDX file sizes can now be increased or reduced for both data and boot volumes.
  • Hyper-V backup changes – In previous generations of Windows Server, Hyper-V backups took two distinct snapshots, one instantaneously and the other at quiesce time and then the two were merged together to create a “crash consistent” backup. But with R2, VM backups only take a single snapshot reducing overhead and increasing backup throughput substantially.
  • NVME support – Windows Server 2012 R2 now ships with a Non-Volatile Memory Express (NVME) driver for PCIe flash storage.  R2’s new NVME driver has been tuned for low latency and high bandwidth and can be used for non-clustered storage spaces to improve write performance (in a Spaces write-back cache?).
  • CSV memory read-cache – Windows Server 2012 R2 can be configured to set aside some host memory for a CSV read cache.  This is different than the Spaces Write-Back cache.  CSV caching would operate in conjunction with any other caching done at the host OS or elsewhere.

That’s about it. Some of the MVPs had a preview of R2 up in Redmond, but all of this was to be announced in TechEd, New Orleans, this week.


Image: Microsoft TechEd by BetsyWeber

SNWUSA Spring 2013 summary

SNWUSA, SNIA, partyFor starters the parties were a bit more subdued this year although I heard Wayne’s suite was hopping to 4am last night (not that I would ever be there that late).

And a trend seen the past couple of years was even more evident this year, many large vendors and vendor spokespeople went missing. I heard that there were a lot more analyst presentations this SNW than prior ones although it was hard to quantify.  But it did seem that the analyst community was pulling double duty in presentations.

I would say that SNW still provides a good venue for storage marketing across all verticals. But these days many large vendors find success elsewhere, leaving SNW Expo mostly to smaller vendors and niche products.  Nonetheless, there were a\ a few big vendors (Dell, Oracle and HP) still in evidence. But EMC, HDS, IBM and NetApp were not   showing on the floor.

I would have to say the theme for this years SNW was hybrid storage. It seemed last fall the products that impressed me were either cloud storage gateways or all flash arrays but this year there weren’t as many of these at the show but hybrid storage certainly has arrived.

Best hybrid storage array of the show

It’s hard to pick just one hybrid storage vendor as my top pick, especially since there were at least 3 others talking to me under NDA, but from my perspective the Hybrid vendor of the show had to be Tegile (pronounced I think, as te’-jile). They seemed to have a fully functional system with snapshot, thin provisioning, deduplication and pretty good VMware support (only time I have heard a vendor talk about VASA “stun” support for thin provisioned volumes).

They made the statement that SSD in their system is used as a cache, not a tier. This use is similar to NetApp’s FlashCache and has proven to be a particularly well performing approach to use of hybrid storage. (For more information on that take a look at some of my NFS and recent SPC-1 benchmark review dispatches. How well this is integrated with their home grown dedupe logic is another question.

On the negative side, they seem to be lacking a true HA/dual controller version but could use two separate systems with synch (I think) replication between them to cover this ground?? They also claimed their dedupe had no performance penalty, a pretty bold claim that cries out for some serious lab validation and/or benchmarking to prove. They also offer an all flash version of their storage (but then how can it be used as a cache?).

The marketing team seemed pretty knowledgeable about the market space and they seem to be going after mid-range storage space.

The product supports file (NFS and CIFS/SMB), iSCSI and FC with GigE, 10GbE and 8Gbps FC. They quote “effective” capacities with dedupe enabled but it can be disabled on a volume basis.

Overall, I was impressed by their marketing and the product (what little I saw).

Best storage tool of the show

Moving onto other product categories, it was hard to see anything that caught my eye. Perhaps I have just been to too many storage conferences but I did get somewhat excited when I looked at SwiftTest.  Essentially they offer a application profiling, storage modeling, workload generating tool set.

The team seems to be branching out of their traditional vendor market focus and going after large service providers and F100 companies with large storage requirements.

Way back, when I was in Engineering, we were always looking for some information as to how customers actually used storage products. Well what SwiftTest has, is an appliance to instrument your application environment (through network taps/hardware port connections) to monitor your storage IO and create a statistical operational profile of your I/O environment. Then take that profile and play it against a storage configuration model to show how well it’s likely to perform.  And if that’s not enough the same appliance can be used to drive a simulated version of the operational profile back onto a storage system.

It offers NFS (v2,v3, v4) CIFS/SMB (SMB1, SMB2, SMB3) FC, iSCSI, and HTTP/REST (what no FCoe?). They mentioned an $8oK price tag for the base appliance (one protocol?) but grows up pretty fast, if you want all of them.  They also seem to have three levels of appliances (my guess more performance and more protocols come with the bigger boxes).

Not sure where they top out but simulating an operational profile can be quite complex especially when you have to be able to control data patterns to match deduplication potential in customer data, drive markov chains with probability representations of operational profiles, and actually execute IO operations. They said something about their ports have dedicated CPU cores to insure adequate performance or something similar but still it seems to little to hit high IO workloads.

Like I said, when I was in engineering were searching for this type of solution back in the late 90s and we would have probably bought it in a moment, if it was available., the domain/web site services provider was one of their customers that used the appliance to test storage configurations. They presented at SNW on some of their results but I missed their session (the case study is available on SwiftTests website).


In short, SNW had a diverse mixture of end user customers but lacked a full complement of vendors to show off to them.   The ratio of vendors to customers has definitely shifted to end-users the last couple of years and if anything has gotten more skewed to end-users, (which paradoxically should appeal to more storage vendors?!).

I talked with lots of end-users, from companies like FedEx, Northrop Grumman and AOL to name just a few big ones. But there were plenty of smaller ones as well.

The show lasted three days and had sessions scheduled all the way to the end. I was surprised at the length and the fact that it started on Tuesday rather than Monday as in years past.  Apparently, SNIA and Computerworld are still tweaking the formula.

It seemed to me there were more cancelled sessions than in years past but again this was hard to quantify.

Some of the customers I talked with thought SNW should go to a once a year and can’t understand why it’s still twice a year.  Many mentioned VMworld as having taken the place of SNW in being a showplace for storage vendors of all sizes and styles.  That and the vendor specific shows from EMC, IBM, Dell and others.

The fall show is moving to Long Beach, CA. Probably, a further experiment to find a formula that works.  Let’s hope they succeed.



New deduplication solutions from Sepaton and NEC

In the last few weeks both Sepaton and NEC have announced new data deduplication appliance hardware and for Sepaton at least, new functionality. Both of these vendors compete against solutions from EMC Data Domain, IBM ProtectTier, HP StoreOnce and others.

Sepaton v7.0 Enterprise Data Protection

From Sepaton’s point of view data growth is exploding, with little increase in organizational budgets and system environments are becoming more complex with data risks expanding, not shrinking. In order to address these challenges Sepaton has introduced a new version of their hardware appliance with new functionality to help address the rising data risks.

Their new S2100-ES3 Series 2925 Enterprise Data Protection Platform with latest Sepaton software now supports up to 80 TB/hour of cluster data ingest (presumably with Symantec OST) and up to 2.0 PB of raw storage in an 8-node cluster. The new appliances support 4-8Gbps FC and 2-10GbE host ports per node, based on HP DL380p Gen8 servers with Intel Xeon E5-2690 processors, 8 core, dual 2.9Ghz CPU, 128 GB DRAM and a new high performance compression card from EXAR. With the bigger capacity and faster throughput, enterprise customers can now support large backup data streams with fewer appliances, reducing complexity and maintenance/licensing fees. S2100-ES3 Platforms can scale from 2 to 8 nodes in a single cluster.

The new appliance supports data-at-rest encryption for customer data security as well as data compression, both of which are hardware based, so there is no performance penalty. Also, data encryption is an optional licensed feature and uses OASIS KMIP 1.0/1.1 to integrate with RSA, Thales and other KMIP compliant, enterprise key management solutions.

NEC HYDRAstor Gen 4

With Gen4 HYDRAstor introduces a new Hybrid Node which contains both the logic for accelerator nodes and capacity for storage nodes, in one 2U rackmounted server. Before the hybrid node similar capacity and accessibility would have required 4U of rack space, 2U for the accelerator node and another 2U for the storage node.

The HS8-4000 HN supports 4.9TB/hr standard or 5.6TB/hr per node with NetBackup OST IO express ingest rates and 12-4TB, 3.5in SATA drives, with up to 48TB of raw capacity. They have also introduced an HS8-4000 SN which just consists of the 48TB of additional storage capacity. Gen4 is the first use of 4TB drives we have seen anywhere and quadruples raw capacity per node over the Gen3 storage nodes. HYDRAstor clusters can scale from 2- to 165-nodes and performance scales linearly with the number of cluster nodes.

With the new HS8-4000 systems, maximum capacity for a 165 node cluster is now 7.9PB raw and supports up to 920.7 TB/hr (almost a PB/hr, need to recalibrate my units) with an all 165-HS8-4000 HN node cluster. Of course, how many customers need a PB/hr of backup ingest is another question. Let alone, 7.9PB of raw storage which of course gets deduplicated to an effective capacity of over 100PBs of backup data (or 0.1EB, units change again).

NEC has also introduced a new low end appliance the HS3-410 for remote/branch office environments that has a 3.2TB/hr ingest with up to 24TB of raw storage. This is only available as a single node system.

Maybe Facebook could use a 0.1EB backup repository?

Image: Intel Team Inside Facebook Data Center by IntelFreePress


Latest SPECsfs2008 results NFS vs. CIFS – chart-of-the-month

SCISFS121227-010(001) (c) 2013 Silverton Consulting, Inc. All Rights Reserved
SCISFS121227-010(001) (c) 2013 Silverton Consulting, Inc. All Rights Reserved

We return to our perennial quest to understand file storage system performance and our views on NFS vs. CIFS performance.  As you may recall, SPECsfs2008 believes that there is no way to compare the two protocols because

  • CIFS/SMB is “statefull” and NFS is “state-less”
  • The two protocols are issuing different requests.

Nonetheless, I feel it’s important to go beyond these concerns and see if there is any way to assess the relative performance of the two protocols.  But first a couple of caveats on the above chart:

  • There are 25 CIFS/SMB submissions and most of them are for SMB environments vs. 64 NFS submissions which are all over the map
  • There are about 12 systems that have submitted exact same configurations for CIFS?SMB and NFS SPECsfs2008 benchmarks.
  • This chart does not include any SSD or FlashCache systems, just disk drive only file storage.

All that being said, let us now see what the plot has to tell us. First the regression line is computed by Excel and is a linear regression.  The regression coefficient for CIFS/SMB is much better at 0.98 vs NFS 0.80. But this just means that their is a better correlation between CIFS/SMB throughput operations per second to the number of disk drives in the benchmark submission than seen in NFS.

Second, the equation and slope for the two lines is a clear indicator that CIFS/SMB provides more throughput operations per second per disk than NFS. What this tells me is that given the same hardware, all things being equal the CIFS/SMB protocol should perform better than NFS protocol for file storage access.

Just for the record the CIFS/SMB version used by SPECsfs2008 is currently SMB2 and the NFS version is NFSv3.  SMB3 was just released last year by Microsoft and there aren’t that many vendors (other than Windows Server 2012) that support it in the field yet and SPECsfs2008 has yet to adopt it as well.   NFSv4 has been out now since 2000 but SPECsfs2008 and most vendors never adopted it.  NFSv4.1 came out in 2010 and still has little new adoption.

So these results are based on older, but current versions of both protocols available in the market today.

So, given all that, if I had an option I would run CIFS/SMB protocol for my file storage.


More information on SPECsfs2008 performance results as well as our NFS and CIFS/SMB ChampionsCharts™ for file storage systems can be found in our NAS Buying Guide available for purchase on our web site.


The complete SPECsfs2008 performance report went out in SCI’s December newsletter.  But a copy of the report will be posted on our dispatches page sometime this month (if all goes well).  However, you can get the latest storage performance analysis now and subscribe to future free newsletters by just using the signup form above right.

As always, we welcome any suggestions or comments on how to improve our SPECsfs2008  performance reports or any of our other storage performance analyses.


Oracle (finally) releases StorageTek VSM6

[Full disclosure: I helped develop the underlying hardware for VSM 1-3 and also way back, worked on HSC for StorageTek libraries.]

Virtual Storage Manager System 6 (VSM6) is here. Not exactly sure when VSM5 or VSM5E were released but it seems like an awful long time in Internet years.  The new VSM6 migrates the platform to Solaris software and hardware while expanding capacity and improving performance.

What’s VSM?

Oracle StorageTek VSM is a virtual tape system for mainframe, System z environments.  It provides a multi-tiered storage system which includes both physical disk and (optional) tape storage for long term big data requirements for z OS applications.

VSM6 emulates up to 256 virtual IBM tape transports but actually moves data to and from VSM Virtual Tape Storage Subsystem (VTSS) disk storage and backend real tape transports housed in automated tape libraries.  As VSM data ages, it can be migrated out to physical tape such as a StorageTek SL8500 Modular [Tape] Library system that is attached behind the VSM6 VTSS or system controller.

VSM6 offers a number of replication solutions for DR to keep data in multiple sites in synch and to copy data to offsite locations.  In addition, real tape channel extension can be used to extend the VSM storage to span onsite and offsite repositories.

One can cluster together up to 256 VSM VTSSs  into a tapeplex which is then managed under one pane of glass as a single large data repository using HSC software.

What’s new with VSM6?

The new VSM6 hardware increases volatile cache to 128GB from 32GB (in VSM5).  Non-volatile cache goes up as well, now supporting up to ~440MB, up from 256MB in the previous version.  Power, cooling and weight all seem to have also gone up (the wrong direction??) vis a vis VSM5.

The new VSM6 removes the ESCON option of previous generations and moves to 8 FICON and 8 GbE Virtual Library Extension (VLE) links. FICON channels are used for both host access (frontend) and real tape drive access (backend).  VLE was introduced in VSM5 and offers a ZFS based commodity disk tier behind the VSM VTSS for storing data that requires longer residency on disk.  Also, VSM supports a tapeless or disk-only solution for high performance requirements.

System capacity moves from 90TB (gosh that was a while ago) to now support up to 1.2PB of data.  I believe much of this comes from supporting the new T10,000C tape cartridge and drive (5TB uncompressed).  With the ability of VSM to cluster more VSM systems to the tapeplex, system capacity can now reach over 300PB.

Somewhere along the way VSM started supporting triple redundancy  for the VTSS disk storage which provides better availability than RAID6.  Not sure why they thought this was important but it does deal with increasing disk failures.

Oracle stated that VSM6 supports up to 1.5GB/Sec of throughput. Presumably this is landing data on disk or transferring the data to backend tape but not both.  There doesn’t appear to be any standard benchmarking for these sorts of systems so, will take their word for it.

Why would anyone want one?

Well it turns out plenty of mainframe systems use tape for a number of things such as data backup, HSM, and big data batch applications.  Once you get past the sunk  costs for tape transports, automation, cartridges and VSMs, VSM storage can be a pretty competitive data storage solution for the mainframe environment.

The fact that most mainframe environments grew up with tape and have long ago invested in transports, automation and new cartridges probably makes VSM6 an even better buy.  But tape is also making a comeback in open systems with LTO-5 and now LTO-6 coming out and with Oracle’s 5TB T10000C cartridge and IBM’s 4TB 3592 JC cartridge.

Not to mention Linear Tape File System (LTFS) as a new tape format that provides a file system for tape data which has brought renewed interest in all sorts of tape storage applications.

Competition not standing still

EMC introduced their Disk Library for Mainframe 6000 (DLm6000) product that supports two different backends to deal with the diversity of tape use in the mainframe environment.  Moreover, IBM has continuously enhanced their Virtual Tape Server the TS7700 but I would have to say it doesn’t come close to these capacities.

Lately, when I talked with long time StorageTek tape mainframe customers they have all said the same thing. When is VSM6 coming out and when will Oracle get their act in gear and start supporting us again.  Hopefully this signals a new emphasis on this market.  Although who is losing and who is winning in the mainframe tape market is the subject of much debate, there is no doubt that the lack of any update to VSM has hurt Oracle StorageTek tape business.

Something tells me that Oracle may have fixed this problem.  We hope that we start to see some more timely VSM enhancements in the future, for their sake and especially for their customers.




Image credit: Interior of StorageTek tape library at NERSC (2) by Derrick Coetzee


Fall SNWUSA wrap-up

Attended SNWUSA this week in San Jose,  It’s hard to see the show gradually change when you attend each one but it does seem that the end-user content and attendance is increasing proportionally.  This should bode well for future SNWs. Although, there was always a good number of end users at the show but the bulk of the attendees in the past were from storage vendors.

Another large storage vendor dropped their sponsorship.  HDS no longer sponsors the show and the last large vendor still standing at the show is HP.  Some of this is cyclical, perhaps the large vendors will come back for the spring show, next year in Orlando, Fl.  But EMC, NetApp and IBM seemed to have pretty much dropped sponsorship for the last couple of shows at least.

SSD startup of the show

Skyhawk hardware (c) 2012 Skyera, all rights reserved (from their website)
Skyhawk hardware (c) 2012 Skyera, all rights reserved (from their website)

The best, new SSD startup had to be Skyera. A 48TB raw flash dual controller system supporting iSCSI block protocol and using real commercial grade MLC.  The team at Skyera seem to be all ex-SandForce executives and technical people.

Skyera’s team have designed a 1U box called the Skyhawk, with  a phalanx of NAND chips, there own controller(s) and other logic as well. They support software compression and deduplication as well as a special designed RAID logic that claims to reduce extraneous write’s to something just over 1 for  RAID 6, dual drive failure equivalent protection.

Skyera’s underlying belief is that just as consumer HDAs took over from the big monster 14″ and 11″ disk drives in the 90’s sooner or later commercial NAND will take over from eMLC and SLC.  And if one elects to stay with the eMLC and SLC technology you are destined to be one to two technology nodes behind. That is, commercial MLC (in USB sticks, SD cards etc) is currently manufactured with 19nm technology.  The EMLC and SLC NAND technology is back at 24 or 25nm technology.  But 80-90% of the NAND market is being driven by commercial MLC NAND.  Skyera came out this past August.

Coming in second place was Arkologic an all flash NAS box using SSD drives from multiple vendors. In their case a fully populated rack holds about 192TB (raw?) with an active-passive controller configuration.  The main concern I have with this product is that all their metadata is held in UPS backed DRAM (??) and they have up to 128GB of DRAM in the controller.

Arkologic’s main differentiation is supporting QOS on a file system basis and having some connection with a NIC vendor that can provide end to end QOS.  The other thing they have is a new RAID-AS which is special designed for Flash.

I just hope their USP is pretty hefty and they don’t sell it someplace where power is very flaky, because when that UPS gives out, kiss your data goodbye as your metadata is held nowhere else – at least that’s what they told me.

Cloud storage startup of the show

There was more cloud stuff going on at the show. Talked to at least three or four cloud gateway providers.  But the cloud startup of the show had to be Egnyte.  They supply storage services that span cloud storage and on premises  storage with an in band or out-of-band solution and provide file synchronization services for file sharing across multiple locations.  They have some hooks into NetApp and other major storage vendor products that allows them to be out-of-band for these environments but would need to be inband for other storage systems.  Seems an interesting solution that if succesful may help accelerate the adoption of cloud storage in the enterprise, as it makes transparent whether storage you access is local or in the cloud. How they deal with the response time differences is another question.

Different idea startup of the show

The new technology showplace had a bunch of vendors some I had never heard of before but one that caught my eye was Actifio. They were at VMworld but I never got time to stop by.  They seem to be taking another shot at storage virtualization. Only in this case rather than focusing on non-disruptive file migration they are taking on the task of doing a better job of point in time copies for iSCSI and FC attached storage.

I assume they are in the middle of the data path in order to do this and they seem to be using copy-on-write technology for point-in-time snapshots.  Not sure where this fits, but I suspect SME and maybe up to mid-range.

Most enterprise vendors have solved these problems a long time ago but at the low end, it’s a little more variable.  I wish them luck but although most customers use snapshots if their storage has it, those that don’t, seem unable to understand what they are missing.  And then there’s the matter of being in the data path?!


If there was a hybrid startup at the show I must have missed them. Did talk with Nimble Storage and they seem to be firing on all cylinders.  Maybe someday we can do a deep dive on their technology.  Tintri was there as well in the new technology showcase and we talked with them earlier this year at Storage Tech Field Day.

The big news at the show was Microsoft purchasing StorSimple a cloud storage gateway/cache.  Apparently StorSimple did a majority of their business with Microsoft’s Azure cloud storage and it seemed to make sense to everyone.

The SNIA suite was hopping as usual and the venue seemed to work well.  Although I would say the exhibit floor and lab area was a bit to big. But everything else seemed to work out fine.

On Wednesday, the CIO from Dish talked about what it took to completely transform their IT environment from a management and leadership perspective.  Seemed like an awful big risk but they were able to pull it off.

All in all, SNW is still a great show to learn about storage technology at least from an end-user perspective.  I just wish some more large vendors would return once again, but alas that seems to be a dream for now.