Commodity hardware debate heats up again

Gold Nanowire Array by lacomj (cc) (from Flickr)
Gold Nanowire Array by lacomj (cc) (from Flickr)

A post by Chris M. Evans, in his The Storage Architect blog (Intel inside storage arrays) re-invigorated the discussion we had last year on commodity hardware always loses.

But buried in the comments was one from Michael Hay (HDS) which pointed to another blog post by Andrew Huang in his bunnie’s blog (Why the best days of open hardware are ahead) where he has an almost brillant discussion on how Moore’s law will eventually peter out (~5nm) and as such, will take much longer to double transistor density.  At that time, hardware customization (by small companies/startups) will once again, come to the forefront in new technology development.

Custom hardware, here now and the foreseeable future

Although it would be hard to argue against Andrew’s point nevertheless, I firmly believe there is still plenty of opportunity today to customize hardware that brings true value to the market.   The fact is that Moore’s law doesn’t mean that hardware customization cannot still be worthwhile.

Hitachi’s VSP (see Hitachi’s VSP vs. VMAX) is a fine example of the use of both custom ASICs, FPGAs (I believe) and standard off the shelf hardware.   HP’s 3PAR  is another example,  they couldn’t have their speedy mesh architecture without custom hardware.

But will anyone be around that can do custom chip design?

Nigel Poulton commented on Chris’s post that with custom hardware seemingly going away, the infrastructure, training and people will no longer be around to support any re-invigorated custom hardware movement.

I disagree.  Intel, IBM, Samsung, and many others large companies still maintain an active electronics engineering team/chip design capability, any of which are capable of creating state of the art ASICs.  These capabilities are what make Moore’s law a reality and will not go away over the long run (the next 20-30 years).

The fact that these competencies are locked up in very large organizations doesn’t mean it cannot be used by small companies/startups as well.  It probably does mean that these wherewithal may cost more. But the market place will deal with that in the long run, that is if the need continues to exist.

But do we still need custom hardware?

Custom hardware creates capabilities that magnify Moore’s law processing capabilities to do things that standard, off the shelf hardware cannot.  The main problem with Moore’s law from a custom hardware perspective is it takes functionality that once took custom hardware yesterday (or 18 months ago) and makes it available on off the shelf components with custom software today.

This dynamic just means that custom hardware needs to keep moving, providing ever more user benefits and functionality to remain viable.  When custom hardware cannot provide any real benefit over standard off the shelf components – that’s when it will die.

Andrew talks about the time it takes to develop custom ASICs and the fact that by the time you have one ready, a new standard chip has come out which doubles processor capabilities. Yes custom ASICs take time to develop, but FPGAs can be created and deployed in much less time. FPGA’s, like custom ASICs, also take advantage of Moore’s law with increased transistor density every 18 months. Yes, FPGAs  may be run slower than custom ASICs, but what it lacks in processing power, it makes up in time to market.

Custom hardware has a bright future as far as I can see.

—–

Comments?

Commodity hardware always loses

Herman Miller's Embody Chair by johncantrell (cc) (from Flickr)
A recent post by Stephen Foskett has revisted a blog discussion that Chuck Hollis and I had on commodity vs. special purpose hardware.  It’s clear to me that commodity hardware is a losing proposition for the storage industry and for storage users as a whole.  Not sure why everybody else disagrees with me about this.

It’s all about delivering value to the end user.  If one can deliver equivalent value with commodity hardware than possible with special purpose hardware then obviously commodity hardware wins – no question about it.

But, and it’s a big BUT, when some company invests in special purpose hardware, they have an opportunity to deliver better value to their customers.  Yes it’s going to be more expensive on a per unit basis but that doesn’t mean it can’t deliver commensurate benefits to offset that cost disadvantage.

Supercar Run 23 by VOD Cars (cc) (from Flickr)
Supercar Run 23 by VOD Cars (cc) (from Flickr)

Look around, one sees special purpose hardware everywhere. For example, just checkout Apple’s iPad, iPhone, and iPod just to name a few.  None of these would be possible without special, non-commodity hardware.  Yes, if one disassembles these products, you may find some commodity chips, but I venture, the majority of the componentry is special purpose, one-off designs that aren’t readily purchase-able from any chip vendor.  And the benefits it brings, aside from the coolness factor, is significant miniaturization with advanced functionality.  The popularity of these products proves my point entirely – value sells and special purpose hardware adds significant value.

One may argue that the storage industry doesn’t need such radical miniaturization.  I disagree of course, but even so, there are other more pressing concerns worthy of hardware specialization, such as reduced power and cooling, increased data density and higher IO performance, to name just a few.   Can some of this be delivered with SBB and other mass-produced hardware designs, perhaps.  But I believe that with judicious selection of special purposed hardware, the storage value delivered along these dimensions can be 10 times more than what can be done with commodity hardware.

Cuba Gallery: France / Paris / Louvre / architecture / people / buildings / design / style / photography by Cuba Gallery (cc) (from Flickr)
Cuba Gallery: France / Paris / Louvre / ... by Cuba Gallery (cc) (from Flickr)

Special purpose HW cost and development disadvantages denied

The other advantage to commodity hardware is the belief that it’s just easier to develop and deliver functionality in software than hardware.  (I disagree, software functionality can be much harder to deliver than hardware functionality, maybe a subject for a different post).  But hardware development is becoming more software like every day.  Most hardware engineers do as much coding as any software engineer I know and then some.

Then there’s the cost of special purpose hardware but ASIC manufacturing is getting more commodity like every day.   Several hardware design shops exist that sell off the shelf processor and other logic one can readily incorporate into an ASIC and Fabs can be found that will manufacture any ASIC design at a moderate price with reasonable volumes.  And, if one doesn’t need the cost advantage of ASICs, use FPGAs and CPLDs to develop special purpose hardware with programmable logic.  This will cut engineering and development lead-times considerably but will cost commensurably more than ASICs.

Do we ever  stop innovating?

Probably the hardest argument to counteract is that over time, commodity hardware becomes more proficient at providing the same value as special purpose hardware.  Although this may be true, products don’t have to stand still.  One can continue to innovate and always increase the market delivered value for any product.

If there comes a time when further product innovation is not valued by the market than and only then, does commodity hardware win.  However, chairs, cars, and buildings have all been around for many years, decades, even centuries now and innovation continues to deliver added value.  I can’t see where the data storage business will be any different a century or two from now…