Roads to R&D success – part 1

Large corporations have a serious problem.  We have talked about this before (see Is M&A the only way to grow, R&D Effectiveness, and Technology innovation).

It’s been brewing for years, some say decades. Successful company’s generate lot’s of cash but investing in current lines of business seldom propels corporations into new markets.

So what can they do?

  • Buy startups – yes, doing so can move corporations into new markets, obtain new technology and perhaps, even a functioning product.  However, they often invest in  unproven technology, asymmetrical organizations and mistaken ROIs.
  • Invest internally – yes, they can certainly start new projects, give it resources and let it run it’s course.  However, they burden most internal project teams with higher overhead, functioning perfection, and loftier justification.

Another approach trumpeted by Cisco and others in recent years is spin-out/spin-in which is probably a little of both.   Here a company can provide funding, developers, and even IP to an entity that is spun out of a company.  The spin-out is dedicated to producing some product in a designated new market and then if goals are met, can be spun back into the company at a high, but fair price.

The most recent example is Cisco’s spin-in Insieme that is going after SDN and Open Flow networking but their prior success with Andiamo and it’s FC SAN technology is another one.  GE, Intel and others have also tried this approach with somewhat less success.

Corporate R&D today

Most company’s have engineering departments with a tried and true project management/development team approach that has stage gates, generates  requirements, architects systems, designs components and finally, develops products.   A staid, steady project cycle which nevertheless is fraught with traps, risks and detours.  These sorts of projects seem only able to enhance current product lines and move products forward to compete in their current markets.

But these projects never seem transformative.  They don’t take a company from 25% to 75% market share or triple corporate revenues in a decade.  They typically fight a rear-guard action against a flotilla of competitors all going after the same market, at worst trying not to lose market share and at best gain modest market share, where possible.

How corporation’s succeed at internal R&D

But there are a few different models that have generated outsized internal R&D success in the past.  These generally fall into a few typical patterns.  We discuss two below.

One depends on visionary leadership and the other on visionary organizations.  For example, let’s look at IBM, AT&T’s Bell Labs and Apple.

IBM R&D in the past and today

First, examine IBM whose CEO, Thomas J. Watson Jr. bet the company on System 360 from 1959 to 1964.  That endeavor cost them ~$5B at the time but eventually catapulted them from one of many computer companies to almost a mainframe monopoly for two decades years.  They created an innovative microcoded, CISC architecture, that spanned a family of system models, and standardized I/O with common peripherals.  From that point on, IBM was able to dominate corporate data processing until the mid 1980’s.  IBM has arguably lost and found their way a couple of times since then.

However as another approach to innovation in 1945, IBM Research was founded.  Today IBM Research is a well funded, independent research lab that generates significant IP in super computing, artificial intelligence and semiconductor technology.

Nonetheless, during the decades since 1945, IBM Research struggled for corporate relevance.  Occasionally coming out with significant IT technology like relational databases, thin film recording heads, and RISC architectures. But arguably such advances were probably put to better use outside IBM.  Recently, this seems to have changed and we now see significant technology moving IBM into new markets from IBM Research.

AT&T and Bell Labs

Bell  Labs is probably the most prolific research organization the world has seen.  They invented statistical process control, the transistor, information theory and probably another dozen or so Nobel prize winning ideas. Early on most of their technology made it into the Bell system but later on they lost their way.

Their parent company AT&T, had a monopoly on long distance phone service, switching equipment and other key technologies in USA’s phone system for much of the twentieth century.  During most of that time Bell Labs was well funded and charged with advancing Bell system technology.

Nonetheless, despite Bell Labs obvious technological success, in the end they mostly served to preserve and enhance the phone system rather than disrupt it.  Some of this was due to justice department decrees limiting AT&T endeavors. But in any case, like IBM research much of Bell Labs technology was taken up by others and transformed many markets.

Apple yesterday and today

Then there’s Apple. They have almost single handedly created three separate market’s, the personal computer, the personal music player and the tablet computer markets while radically transforming the smart phone market as well.   In every case there were sometimes, significant precursors to the technology, but Apple was the one to catalyze, popularize and capitalize on each one.

Apple II was arguably the first personal computer but the Macintosh redefined the paradigm.  The Mac wasn’t the great success it could have been, mostly due to management changes that moved Jobs out of Apple.  But it’s potential forced major competitors to change their products substantially.

When Jobs returned, he re-invigorated the Mac.  After that, he went about re-inventing the music player, the smart phone and tablet computing.

Could Apple have done all these without Jobs, I doubt it.  Could a startup have taken any of these on, perhaps but I think it unlikely.

The iPod depended on music industry contracts, back office and desktop software and deep technological acumen.  None of these were exclusive to Apple nor big corporations.  Nevertheless, Jobs saw the way forward first, put the effort into making them happen and Apple reaped the substantial rewards that ensued.

~~~~

In part 2 of the Road to R&D success we propose some options for how to turn corporate R&D into the serious profit generator it can become.  Stay tuned

To be continued …

Image: Replica of first transistor from Wikipedia

 

One platform to rule them all – Compellent&EqualLogic&Exanet from Dell

Compellent drive enclosure (c) 2010 Compellent (from Compellent.com)
Compellent drive enclosure (c) 2010 Compellent (from Compellent.com)

Dell and Compellent may be a great match because Compellent uses commodity hardware combined with specialized software to create their storage subsystem. If there’s any company out there that can take advantage of commodity hardware it’s probably Dell. (Of course Commodity hardware always loses in the end, but that’s another story).

Similarly, Dell’s EqualLogic iSCSI storage system uses commodity hardware to provide its iSCSI storage services.  It doesn’t take a big leap of imagination to have one storage system that combines the functionality of EqualLogic’s iSCSI and Compellent’s FC storage capabilities.  Of course there are others already doing this including Compellent themselves which have their own iSCSI support already built into their FC storage system.

Which way to integrate?

Does EqualLogic survive such a merger?  I think so.  It’s easy to imagine that Equal Logic may have the bigger market share today. If that’s so, the right thing might be  to merge Compellent FC functionality into EqualLogic.  If Compellent has the larger market, the correct approach is the opposite. The answer lies probably with a little of both.  It seems easiest to add iSCSI functionality to a FC storage system than the converse but the FC to iSCSI approach may be the optimum path for Dell, because of the popularity of their EqualLogic storage.

What about NAS?

The only thing missing from this storage system is NAS.  Of course the Compellent storage offers a NAS option through the use of a separate Windows Storage Server (WSS) front end.  Dell’s EqualLogic does the much the same to offer NAS protocols for their iSCSI system.  Neither of these are bad solutions but they are not a fully integrated NAS offering such as available from NetApp and others.

However, there is a little discussed part, the Dell-Exanet acquisition which happened earlier this year. Perhaps the right approach is to integrate Exanet with Compellent first and target this at the high end enterprise/HPC market place, keeping Equal Logic at the SMB end of the marketplace.  It’s been a while since I have heard about Exanet, and nothing since the acquisition earlier this year.  Does it make sense to backend a clustered NAS solution with FC storage – probably.

—-

Much of this seems doable to me, but it all depends on taking the right moves once the purchase is closed.   But if I look at where Dell is weakest (baring their OEM agreement with EMC), it’s in the highend storage space.  Compellent probably didn’t have much of a foot print there as possible due to their limited distribution and support channel.  A Dell acquisition could easily eliminate these problems and open up this space without having to do much other than start to marketing, selling and supporting Compellent.

In the end, a storage solution supporting clustered NAS, FC, and iSCSI that combined functionality equivalent to Exanet, Compellent and EqualLogic based on commodity hardware (ouch!) could make a formidable competitor to what’s out there today if done properly. Whether Dell could actually pull this off and in a timely manner even if they purchase Compellent, is another question.

Comments?