A college course on identifying BS

Read an article the other day from Recode (These University of Washington professors teaching a course on Calling BS) that seems very timely. The syllabus is online (Calling Bullshit — Syllabus) and it looks like a great start on identifying falsehood wherever it can be found.

In the beginning, what’s BS?

The course syllabus starts out referencing Brandolini’s Bullshit Asymmetry Principal (Law): the amount of energy needed to refute BS is an order of magnitude bigger than to produce it.

Then it goes into a rather lengthy definition of BS from Harry Frankfort’s 1986 On Bullshit article. In sum, it starts out reviewing a previous author’s discussions on Humbug and ends up at the OED. Suffice it to say Frankfurt’s description of BS runs the gamut from: Deceptive misrepresentation to short of lying.

They course syllabus goes on to reference two lengthy discussions/comments on Frankfurt’s seminal On Bullshit article, but both Cohen’s response, Deeper into BS and Eubank & Schaeffer’s A kind word for BS: …  are focused more on academic research rather than everyday life and news.

How to mathematically test for BS

The course then goes into mathematical tests for BS that range from Fermi’s questions, the Grim Test and Benford’s 1936 Law of Anomalous Numbers. These tests are all ways of looking at data and numbers and estimating whether they are bogus or not. Benford’s paper/book talks about how the first page of logarithms is always more used than others because numbers that start with 1 are more frequent than any other number.

How rumors propagate

The next section of the course (week 4) talks about the natural ecology of BS.

Here there’s reference to an article by Friggeri, et al, on Rumor Cascades, which discusses the frequency with which patently both true, false and partially true/partially false rumors are “shared” on social media (Facebook).

The professors look at a website called Snopes.com which evaluates the veracity of publishes rumors uses this to classify the veracity of rumors. Next they examine how these rumors are shared over time on Facebook.

Summarizing their research, both false and true rumors propagate sporadically on Facebook. But even verified false or mixed true/mixed false rumors (identified by Snopes.com) continue to propagate on Facebook. This seems to indicate that rumor sharers are ignoring the rumor’s truthfulness or are just unaware of the Snopes.com assessment of the rumor.

Other topics on calling BS

The course syllabus goes on to causality (correlation is not causation, a common misconception used in BS), statistical traps and trickery (used to create BS), data visualization (which can be used to hide BS), big data (GiGo leads to BS), publication bias (e.g., most published research presents positive results, where’s all the negative results research…), predatory publishing and scientific misconduct (organizations that work to create BS for others), the ethics of calling BS (the line between criticism and harassment), fake news and refuting BS.

Fake news

The section on Fake News is very interesting. They reference an article in the NYT, The Agency about how a group in Russia have been reaping havoc across the internet with fake news and bogus news sites.

But there’s more another article on NYT website, Inside a fake news sausage factory, details how multiple websites started publishing bogus news and then used advertisement revenue to tell them which bogus news generated more ad revenue – apparently there’s money to be made in advertising fake news. (Sigh, probably explains why I can’t seem to get any sponsors for my websites…).

Improving the course

How to improve their course? I’d certainly take a look at what Facebook and others are doing to identify BS/fake news and see if these are working effectively.

Another area to add might be a historical review of fake rumors, news or information. This is not a new phenomenon. It’s been going on since time began.

In addition, there’s little discussion of the consequences of BS on life, politics, war, etc. The world has been irrevocably changed in the past  on account of false information. Knowing how bad this has been this might lend some urgency to studying how to better identify BS.

There’s a lot of focus on Academia in the course and although this is no doubt needed, most people need to understand whether the news they see every day is fake or not. Focusing more on this would be worthwhile.

~~~~

I admire the University of Washington professors putting this course together. It’s really something that everyone needs to understand  nowadays.

They say the lectures will be recorded and published online – good for them. Also, the current course syllabus is for a one credit hour course but they would like to expand it to a three to four credit hour course – another great idea

Comments?

Photo credit(s): The Donation of ConstantineNew York World – Remember the Maine, Public Domain; Benjamin Franklin’s Bag of Scalps letter;  fake-news-rides-sociales by Portal GDA

Mixed progress on self-driving cars

Read an article the other day on the progress in self-driving cars in NewsAtlas (DMV reports self-driving cars are learning — fast). More details are available from their source (CA [California] DMV [Dept. of Motor Vehicles] report).

The article reported on what’s called disengagement events that occurred on CA roads. This is where a driver has to take over from the self-driving automation to deal with a potential mis-queue, mistake, or accident.

Waymo (Google) way out ahead

It appears as if Waymo, Google’s self-driving car spin out, is way ahead of the pack. It reported only 124 disengages for 636K mi (~1M km) or ~1 disengage every ~5.1K mi (~8K km). This is ~4.3X better rate than last year, 1 disengage for every ~1.2K mi (1.9K km).

Competition far behind

Below I list some comparative statistics (from the DMV/CA report, noted above), sorted from best to worst:

  • BMW: 1 disengage 638 mi (1027 km)
  • Ford: 3 disengages for 590 mi (~950 km) or 1 disengage every ~197 mi (~317 km);
  • Nissan: 23 disengages for 3.3K mi (3.5K km) or 1 disengage every ~151 mi (~243 km)
  • Cruise (GM) automation: had 181 disengagements for ~9.8K mi (~15.8K km) or 1 disengage every ~54 mi (~87 km)
  • Delphi: 149 disengages for ~3.1K mi (~5.0K km) or 1 disengage every ~21 mi (~34 km);

There was no information on previous years activities so no data on how competitors had improved over the last year.

Please note: the report only applies to travel on California (CA) roads. Other competitors are operating in other countries and other states (AZ, PA, & TX to name just a few). However, these rankings may hold up fairly well when combined with other state/country data. Thousand(s) of kilometers should be adequate to assess self-driving cars disengagement rates.

Waymo moving up the (supply chain) stack

In addition, according to a Recode, (The Google car was supposed to disrupt the car industry) article, Waymo is moving from a (self-driving automation) software supplier to a hardware and software supplier to the car industry.

Apparently, Google has figured out how to reduce their sensor (hardware) costs by a factor of 10X, bringing the sensor package down from $75K to $7.5K, (most probably due to a cheaper way to produce Lidar sensors – my guess).

So now Waymo is doing about ~65 to ~1000 X more (CA road) miles than any competitor, has a much (~8 to ~243 X) better disengage rate and is  moving to become a major auto supplier in both hardware and software.

It’s going to be an interesting century.

If the 20th century was defined by the emergence of the automobile, the 21st will probably be defined by dominance of autonomous operations.

Comments?

Photo credits: Substance E′TS; and Waymo on the road