What’s wrong with tape?

StorageTek Automated Cartridge System by brewbooks (cc) (from Flickr)
StorageTek Automated Cartridge System by brewbooks (cc) (from Flickr)

Was on a conference call today with Oracle’s marketing discussing their tape business.  Fred Moore (from Horison Information Systems) was on the call and mentioned something which surprised me.  What’s missing in open and distributed systems was some standalone mechanism to stack volumes onto a single tape cartridge.

The advantages of tape are significant, namely:

  • Low power utilization for offline or nearline storage
  • Cheap media, drives, and automation systems
  • Good sequential throughput
  • Good cartridge density

But most of these advantages fade when cartridge capacity utilization drops.  One way to increase cartridge capacity utilization is to stack multiple tape volumes on a single cartridge.

Mainframes (like system/z) have had cartridge stacking since the late 90’s.  Such capabilities came about due to the increasing cartridge capacities then available. Advance a decade and the problem still exists, Oracle’s StorageTek T10000 has a 1TB cartridge capacity and LTO-5 supports 1.5TB per cartridge both uncompressed.  Nonetheless, open or distributed systems still have no tape stacking capability.

Although I agree with Fred that volume stacking is missing in open systems, but does it really need such a thing.  Currently it seems open systems uses tape for backups, archive data and the occasional batch run.  Automated hierarchical storage management can readily fill up tape cartridges by holding their data movement to tape until enough data is ready to be moved.  On the other hand, backups by their very nature create large sequential streams of data which should result in high capacity utilization except for the last tape in a series.  Which only leaves the problem of occasional batch runs using large datasets or files.

I believe most batch processing today already takes place on the mainframe, leaving relatively little for open or distributed systems.  There are certainly some verticals that do lots of batch processing, for example banks and telcos.  But most heavy batch users grew up in the heyday of the mainframe and are still using them today.

Condor notwithstanding, open and distributed systems never had any sophisticated batch processing capabilities readily available on the mainframe. As such, of those new companies that need batch processing, my guess is that they start with open and as their needs for batch grow move these applications to mainframe.

So the real question becomes how do we increase open systems batch processing.   I don’t think a tape volume stacking system solves that problem.

Given all the above, I see tape use in open being relegated to backup and archive and used less and less for any other activities.

What do you think?

7 grand challenges for the next storage century

Clock tower (4) by TJ Morris (cc) (from flickr)
Clock tower (4) by TJ Morris (cc) (from flickr)

I saw a recent IEEE Spectrum article on engineering’s grand challenges for the next century and thought something similar should be done for data storage. So this is a start:

  • Replace magnetic storage – most predictions show that magnetic disk storage has another 25 years and magnetic tape another decade after that before they run out of steam. Such end-dates have been wrong before but it is unlikely that we will be using disk or tape 50 years from now. Some sort of solid state device seems most probable as the next evolution of storage. I doubt this will be NAND considering its write endurance and other long-term reliability issues but if such issues could be re-solved maybe it could replace magnetic storage.
  • 1000 year storage – paper can be printed today with non-acidic based ink and retain its image for over a 1000 years. Nothing in data storage today can claim much more than a 100 year longevity. The world needs data storage that lasts much longer than 100 years.
  • Zero energy storage – today SSD/NAND and rotating magnetic media consume energy constantly in order to be accessible. Ultimately, the world needs some sort of storage that only consumes energy when read or written or such storage would provide “online access with offline power consumption”.
  • Convergent fabrics running divergent protocols – whether it’s ethernet, infiniband, FC, or something new, all fabrics should be able to handle any and all storage (and datacenter) protocols. The internet has become so ubiquitous becauset it handles just about any protocol we throw at it. We need the same or something similar for datacenter fabrics.
  • Securing data – securing books or paper is relatively straightforward today, just throw them in a vault/safety deposit box. Securing data seems simple but yet is not widely used today. It doesn’t have to be that way. We need better, more long lasting tools and methodology to secure our data.
  • Public data repositories – libraries exist to provide access to the output of society in the form of books, magazines, papers and other printed artifacts. No such repository exists today for data. Society would be better served if we could store and retrieve data if there were library like institutions could store data. Most of these issues are legal due to data ownership but technological issues exist here as well.
  • Associative accessed storage – Sequential and random access have been around for over half a century now. Associative storage could complement these and be another approach allowing storage to be retrieved by its content. We can kind of do this today by keywording and indexing data. Biological memory is accessed associations or linkages to other concepts, once accessed memory seem almost sequentially accessed from there. Something comparable to biological memory may be required to build more intelligent machines.

Some of these are already being pursued and yet others receive no interest today. Nonetheless, I believe they all deserve investigation, if storage is to continue to serve its primary role to society, as a long term storehouse for society’s culture, thoughts and deeds.

Comments?

Repositioning of tape

HP LTO 4 Tape Media
HP LTO 4 Tape Media
In my past life, I worked for a dominant tape vendor. Over the years, we had heard a number of times that tape was dead. But it never happened. BTW, it’s also not happening today.

Just a couple of weeks ago, I was at SNW and vendor friend of mine asked if I knew anyone with tape library expertise because they were bidding on more and more tape archive opportunities. Tape seems alive and kicking for what I can see.

However, the fact is that tape use is being repositioned. Tape is no longer the direct target for backups that it once was. Most backup packages nowadays backup to disk and then later, if at all, migrate this data to tape (D2D2T). Tape is being relegated to a third tier of storage, a long-term archive and/or a long term backup repository.

The economics of tape are not hard to understand. You pay for robotics, media and drives. Tape, just like any removable media requires no additional power once it’s removed from the transport/drive used to write it. Removable media can be transported to an offsite repository or accross the continent. There it can await recall with nary an ounce (volt) of power consumed.

Problems with tape

So what’s wrong with tape, why aren’t more shops using it. Let me count the problems

  1. Tape, without robotics, requires manual intervention
  2. Tape, because of its transportability, can be lost or stolen, leading to data security breaches
  3. Tape processing, in general, is more error prone than disk. Tape can have media and drive errors which cause data transfer operations to fail
  4. Tape is accessed sequentially, it cannot be randomly accessed (quickly) and only one stream of data can be accepted per drive
  5. Much of a tape volume is wasted, never written space
  6. Tape technology doesn’t stay around forever, eventually causing data obsolescence
  7. Tape media doesn’t last forever, causing media loss and potentially data loss

Likely some other issues with tape missed here, but these seem the major ones from my perspective.

It’s no surprise that most of these problems are addressed or mitigated in one form or another by the major tape vendors, software suppliers and others interested in continuing tape technology.

Robotics can answer the manual intervention, if you can afford it. Tape encryption deals effectively with stolen tapes, but requires key management somewhere. Many applications exist today to help predict when media will go bad or transports need servicing. Tape data, is and always will be, accessed sequentially, but then so is lot’s of other data in today’s IT shops. Tape transports are most definitely single threaded but sophisticated applications can intersperse multiple streams of data onto that single tape. Tape volume stacking is old technology, not necessarily easy to deploy outside of some sort of VTL front-end, but is available. Drive and media technology obsolescence will never go away, but this indicates a healthy tape market place.

Future of tape

Say what you will about Ultrium or the Linear Tape-Open (LTO) technology, made up of HP, IBM, and Quantum research partners, but it has solidified/consolidated the mid-range tape technology. Is it as advanced as it could be, or pushing to open new markets – probably not. But they are advancing tape technology providing higher capacity, higher performance and more functionality over recent generations. And they have not stopped, Ultrium’s roadmap shows LTO-6 right after LTO-5 and delivery of LTO-5 at 1.6TB uncompressed capacity tape, is right around the corner.

Also IBM and Sun continue to advance their own proprietary tape technology. Yes, some groups have moved away from their own tape formats but that’s alright and reflects the repositioning that’s happening in the tape marketplace.

As for the future, I was at an IEEE magnetics meeting a couple of years back and the leader said that tape technology was always a decade behind disk technology. So the disk recording heads/media in use today will likely see some application to tape technology in about 10 years. As such, as long as disk technology advances, tape will come out with similar capabilities sometime later.

Still, it’s somewhat surprising that tape is able to provide so much volumetric density with decade old disk technology, but that’s the way tape works. Packing a ribbon of media around a hub, can provide a lot more volumetric storage density than a platter of media using similar recording technology.

In the end, tape has a future to exploit if vendors continue to push its technology. As a long term archive storage, it’s hard to beat its economics. As a backup target it may be less viable. Nonetheless, it still has a significant install base which turns over very slowly, given the sunk costs in media, drives and robotics.

Full disclosure: I have no active contracts with LTO or any of the other tape groups mentioned in this post.

Tape v Disk v SSD v RAM

There was a time not long ago when the title of this post wouldn’t have included SSD. But, with the history of the last couple of years, SSD has earned its right to be included.

A couple of years back I was at a Rocky Mountain Magnetics Seminar (see IEEE magnetics societies) and a disk drive technologist stated that Disks have about another 25 years of technology roadmap ahead of them. During this time they will continue to increase density, throughput and other performance metrics. After 25 years of this they will run up against some theoretical limits which will halt further density progress.

At the same seminar, the presenter said that Tape was lagging Disk technology by about 5-10 years or so. As such, tape should continue to advance for another 5-10 years after disk stops improving at which time tape would also stop increasing density.

Does all this mean the end of tape and disk? I think not. Paper stopped advancing in density theoretically about 2 to 3000 years ago (the papyrus scroll was the ultimate in paper “rotating media”). If we move up to the codex or book form- which in my view is a form factor advance – this took place around 400AD (see history of scroll and codex). Paperback, another form factor advance, took place in the early 20th century (see paperback history).

Turning now to write performance, moveable type was a significant paper (write) performance improvement and started in the mid 15th century. The printing press would go on to improve (paper write) performance for the next six centuries (see printing press history) and continues today.

All this indicates that some data technology, whose density was capped over 2000 years ago, can continue to advance and support valuable activity in today’s world and for the foreseeable future. “Will disk and tape go away” is the wrong question, the right question is “can disk or tape, after SSDs reach price equivalence on a $/GB basis, still be useful to the world”?

I think yes, but that depends on a number of factors as to how the relative SSD-Disk-Tape technologies advance. Assuming someday all these technologies support equivalent Tb/SqIn or spatial density and

  • SSD’s retain their relative advantage in random access speed,
  • Tape it’s advantage in sequential throughput, volumetric density, and long media life, and
  • Disk it’s all around, combined sequential and random access advantage

It seems likely that each can sustain some niche in the data center/home office of tomorrow, although probably not where they are today.

One can see trends being enacted in the enterprise data centers today that are altering the relative positioning of SSDs, disks and tape. Tape is now being relegated to long term, archive storage, Disk is moving to medium-term, secondary storage and SSDs is replacing top tier, primary storage.

More thoughts on this in future posts.