FAST(HARD) or Slow(soft)AGI takeoff – AGI Part 6

I was listening to a podcast a couple of weeks back and the person being interviewed made a comment that he didn’t believe that AGI would have a fast (hard) take off rather it would be slow (soft). Here’s the podcast John Carmack interviewed by Lex Fridman).

Hard vs. soft takeoff

A hard (fast) takeoff implies a relatively quick transition (seconds, hours, days, or months) between AGI levels of intelligence and super AGI levels of intelligence. A soft (slow) takeoff implies it would take a long time (years, decades, centuries) to go from AGI to super AGI.

We’ve been talking about AGI for a while now and if you want to see more about our thoughts on the topic, check out our AGI posts (in most recent order: AGI part 5, part 4, part 3 (ish), part (2), part (1), and part (0)).

The real problem is that many believe that any AGI that reaches super-intelligence will have drastic consequences for the earth and especially, for humanity. However, this is whole other debate.

The view is that a slow AGI takeoff might (?) allow sufficient time to imbue any and all (super) AGI with enough safeguards to eliminate or minimize any existential threat to humanity and life on earth (see part (1) linked above).

A fast take off won’t give humanity enough time to head off this problem and will likely result in an humanity ending and possibly, earth destroying event.

Hard vs Soft takeoff – the debate

I had always considered AGI would have a hard take off but Carmack seemed to think otherwise. His main reason is that current large transformer models (closest thing to AGI we have at the moment) are massive and take lots of special purpose (GPU/TPU/IPU) compute, lots of other compute and gobs and gobs of data to train on. Unclear what the requirements are to perform inferencing but suffice it to say it should be less.

And once AGI levels of intelligence were achieved, it would take a long time to acquire any additional regular or special purpose hardware, in secret, required to reach super AGI.

So, to just be MECE (mutually exclusive and completely exhaustive) on the topic, the reasons researchers and other have posited to show that AGI will have a soft takeoff, include:

  • AI hardware for training and inferencing AGI is specialized, costly, and acquisition of more will be hard to keep secret and as such, will take a long time to accomplish;
  • AI software algorithmic complexity needed to build better AGI systems is significantly hard (it’s taken 70yrs for humanity to reach todays much less than AGI intelligent systems) and will become exponentially harder to go beyond AGI level systems. This additional complexity will delay any take off;
  • Data availability to train AGI is humongous, hard to gather, find, & annotate properly. Finding good annotated data to go beyond AGI will be hard and will take a long time to obtain;
  • Human government and bureaucracy will slow it down and/or restrict any significant progress made in super AGI;
  • Human evolution took Ms of years to go from chimp levels of intelligence to human levels of intelligence, why would electronic evolution be 6-9 orders of magnitude faster.
  • AGI technology is taking off but the level of intelligence are relatively minor and specialized today. One could say that modern AI has been really going since the 1990s so we are 30yrs in and today have almost good AI chatbots today and AI agents that can summarize passages/articles, generate text from prompts or create art works from text. If it takes another 30 yrs to get to AGI, it should provide sufficient time to build in capabilities to limit super-AGI hard take off.

I suppose it’s best to take these one at a time.

  • Hardware acquisition difficulty – I suppose the easiest way for an intelligent agent to acquire additional hardware would be to crack cloud security and just take it. Other ways may be to obtain stolen credit card information and use these to (il)legally purchase more compute. Another approach is to optimize the current AGI algorithms to run better within the same AGI HW envelope, creating super AGI that doesn’t need any more hardware at all.
  • Software complexity growing – There’s no doubt that AGI software will be complex (although the podcast linked to above, is sub-titled that “AGI software will be simple”). But any sub-AGI agent that can change it’s code to become better or closer to AGI, should be able to figure out how not to stop at AGI levels of intelligence and just continue optimizating until it reaches some wall. i
  • Data acquisition/annotation will be hard – I tend to think the internet is the answer to any data limitations that might be present to an AGI agent. Plus, I’ve always questioned if Wikipedia and some select other databases wouldn’t be all an AGI would need to train on to attain super AGI. Current transformer models are trained on Wikipedia dumps and other data scraped from the internet. So there’s really two answers to this question, once internet access is available it’s unclear that there would be need for anymore data. And, with the data available to current transformers, it’s unclear that this isn’t already more than enough to reach super AGI
  • Human bureaucracy will prohibit it: Sadly this is the easiest to defeat. 1) there are roque governments and actors around the world with more than sufficient resources to do this on their own. And no agency, UN or otherwise, will be able to stop them. 2) unlike nuclear, the technology to do AI (AGI) is widely available to business and governments, all AI research is widely published (mostly open access nowadays) and if anything colleges/universities around the world are teaching the next round of AI scientists to take this on. 3) the benefits for being first are significant and is driving a weapons (AGI) race between organizations, companies, and countries to be first to get there.
  • Human evolution took Millions of years, why would electronic be 6-9 orders of magnitude faster – electronic computation takes microseconds to nanoseconds to perform operations and humans probably 0.1 sec, or so. Electronics is already 5 to 8 orders of magnitude faster than humans today. Yes the human brain is more than one CPU core (each neuron would be considered a computational element). But there are 64 core CPUs/4096 CORE GPUs out there today and probably one could consider similar in nature if taken in the aggregate (across a hyperscaler lets say). So, just using the speed ups above it should take anywhere from 1/1000 of a year to 1 year to cover the same computational evolution as human evolution covered between the chimp and human and accordingly between AGI and AGIx2 (ish).
  • AGI technology is taking a long time to reach, which should provide sufficient time to build in safeguards – Similar to the discussion on human bureaucracy above, with so many actors taking this on and the advantages of even a single AGI (across clusters of agents) would be significant, my guess is that the desire to be first will obviate any thoughts on putting in safeguards.

Other considerations for super AGI takeoff

Once you have one AGI trained why wouldn’t some organization, company or country deploy multiple agents. Moreover, inferencing takes orders of magnitude less computational power than training. So with 1/100-1/1000th the infrastructure, one could have a single AGI. But the real question is wouldn’t a 100- or 1000-AGis represent super intelligence?

Yes and no, 100 humans doesn’t represent super intelligence and a 1000 even less so. But humans have other desires, it’s unclear that 100 humans super focused on one task wouldn’t represent super intelligence (on that task).

Interior view of a data center with equipment

What can be done to slow AGI takeoff today

Baring something on the order of Nuclear Proliferation treaties/protocols, putting all GPUs/TPUs/IPUs on weapons export limitations AND restricting as secret, any and all AI research, nothing easily comes to mind. Of course Nuclear Proliferation isn’t looking that good at the moment, but whatever it’s current state, it has delayed proliferation over time.

One could spend time and effort slowing technology progress down. Such as by reducing next generation CPU/GPU/IPU compute cores , limiting compute speedups, reduce funding for AI research, putting a compute tax, etc. All of which, if done across the technological landscape and the whole world, could give humanity more time to build in AGI safeguards. But doing so would adversely impact all technological advancement, in healthcare, business, government, etc. And given the proliferation of current technology and the state actors working on increasing capabilities to create more, it would be hard to envision slowing technological advancement down much, if at all.

It’s almost like putting a tax on slide rules or making their granularity larger.

It could be that super AGI would independently perceive itself benignly, and only provide benefit to humanity and the earth. But, my guess is that given the number of bad actors intent on controlling the world, even if this were true, they would try to (re-)direct it to harm segments of humanity/society. And once unleashed, it would be hard to stop.

The only real solution to AGI in bad actor hands, is to educate all of humanity to value all humans and to cherish the environment we all live in as sacred. This would eliminate bad actors,

It sounds so naive, but in reality, it’s the only thing, I believe, the only way we can truly hope to get us through this AGI technological existential crisis.

Just like nuclear, we as a society will keep running into technological existential crisis’s like this. Heading all these off, with a better more all inclusive, more all embracing, and less combative humanity could help all of them.

Comments?

Picture Credits:

The Hollowing out of enterprise IT

We had a relatively long discussion yesterday, amongst a bunch of independent analysts and one topic that came up was my thesis that enterprise IT is being hollowed out by two forces pulling in opposite directions on their apps. Those forces are the cloud and the edge.

Western part of the abandoned Packard Automotive Plant in Detroit, Michigan. by Albert Duce

Cloud sirens

The siren call of the cloud for business units, developers and modern apps has been present for a long time now. And their call is more omnipresent than Odysseus ever had to deal with.

The cloud’s allure is primarily low cost-instant infrastructure that just works, a software solution/tool box that’s overflowing, with locations close to most major metropolitan areas, and the extreme ease of starting up.

If your app ever hopes to scale to meet customer demand, where else can you go. If your data can literally come in from anywhere, it usually lands on the cloud. And if you have need for modern solutions, tools, frameworks or just about anything the software world can create, there’s nowhere else with more of this than the cloud.

Pre-cloud, all those apps would have run in the enterprise or wouldn’t have run at all. And all that data would have been funneled back into the enterprise.

Not today, the cloud has it all, its siren call is getting louder everyday, ever ready to satisfy every IT desire anyone could possibly have, except for the edge.

The Edge, last bastion for onsite infrastructure

The edge sort of emerged over the last decade or so kind of in stealth mode. Yes there were always pockets of edge, with unique compute or storage needs. For example, video surveillance has been around forever but the real acceleration of edge deployments started over the last decade or so as compute and storage prices came down drastically.

These days, the data being generated is stagering and compute requirements that go along with all that data are all over the place, from a few ARMv/RISC V cores to a server farm.

For instance, CERN’s LHC creates a PB of data every second of operation (see IEEE Spectrum article, ML shaking up particle physics too). But they don’t store all that. So they use extensive compute (and ML) to try to only store interesting events.

Seismic ships roam the seas taking images of underground structures, generating gobs of data, some of which is processed on ship and the rest elsewhere. A friend of mine creates RPi enabled devices that measure tank liquid levels deployed in the field.

More recently, smart cars are like a data center on tires, rolling across roads around the world generating more data than you want can even imagine. 5G towers are data centers ontop of buildings, in farmland, and in cell towers doting the highways of today. All off the beaten path, and all places where no data center has ever gone before.

In olden days there would have been much less processing done at the edge and more in an enterprise data center. But nowadays, with the advent of relatively cheap computing and storage, data can be pre-processed, compressed, tagged all done at the edge, and then sent elsewhere for further processing (mostly done in the cloud of course).

IT Vendors at the crossroads

And what does the hollowing out of the enterprise data centers mean for IT server and storage vendors, mostly danger lies ahead. Enterprise IT hardware spend will stop growing, if it hasn’t already, and over time, shrink dramatically. It may be hard to see this today, but it’s only a matter of time.

Certainly, all these vendors can become more cloud like, on prem, offering compute and storage as a service, with various payment options to make it easier to consume. And for storage vendors, they can take advantage of their installed base by providing software versions of their systems running in the cloud that allows for easier migration and onboarding to the cloud. The server vendors have no such option. I see all the above as more of a defensive, delaying or holding action.

This is not to say the enterprise data centers will go away. Just like, mainframe and tape before them, on prem data centers will exist forever, but will be relegated to smaller and smaller, niche markets, that won’t grow anymore. But, only as long as vendor(s) continue to upgrade technology AND there’s profit to be made.

It’s just that that astronomical growth, that’s been happening ever since the middle of last century, happen in enterprise hardware anymore.

Long term life for enterprise vendors will be hard(er)

Over the long haul, some server vendors may be able to pivot to the edge. But the diversity of compute hardware there will make it difficult to generate enough volumes to make a decent profit there. However, it’s not to say that there will be 0 profits there, just less. So, when I see a Dell or HPE server, under the hood of my next smart car or inside the guts of my next drone, then and only then, will I see a path forward (or sustained revenue growth) for these guys.

For enterprise storage vendors, their future prospects look bleak in comparison. Despite the data generation and growth at the edge, I don’t see much of a role for them there. The enterprise class feature and functionality, they have spent the decades creating and nurturing aren’t valued as much in the cloud nor are they presently needed in the edge. Maybe I’m missing something here, but I just don’t see a long term play for them in the cloud or edge.

~~~~

For the record, all this is conjecture on my part. But I have always believed that if you follow where new apps are being created, there you will find a market ready to explode. And where the apps are no longer being created, there you will see a market in the throws of a slow death.

Photo Credit(s):

Safe AI

I’ve been writing about AGI (see part-0 [ish]part-1 [ish]part-2 [ish]part-3ish, part-4 and part 5) and the dangers that come with it (part-0 in the above list) for a number of years now. My last post on the subject I expected to be writing a post discussing the book Human compatible AI and the problem of control which is a great book on the subject. But since then I ran across another paper that perhaps is a better brief introduction into the topic and some of the current thought and research into developing safe AI.

The article I found is Concrete problems in AI, written by a number of researchers at Google, Stanford, Berkley, and OpenAI. It essentially lays out the AI safety problem in 5 dimensions and these are:

Avoiding negative side effects – these can be minor or major and is probably the one thing that scares humans the most, some toothpick generating AI that strips the world to maximize toothpick making.

Avoiding reward hacking – this is more subtle but essentially it’s having your AI fool you in that it’s doing what you want but doing something else. This could entail actually changing the reward logic itself to being able to convince/manipulate the human overseer into seeing things it’s way. Also a pretty bad thing from humanity’s perspective

Scalable oversight – this is the problem where human(s) overseers aren’t able to keep up and witness/validate what some AI is doing, 7×24, across the world, at the speed of electronics. So how can AI be monitored properly so that it doesn’t go and do something it’s not supposed to (see the prior two for ideas on how bad this could be).

Safe exploration – this is the idea that reinforcement learning in order to work properly has to occasionally explore a solution space, e.g. a Go board with moves selected at random, to see if they are better then what it currently believes are the best move to make. This isn’t much of a problem for game playing ML/AI but if we are talking about helicopter controlling AI, exploration at random could destroy the vehicle plus any nearby structures, flora or fauna, including humans of course.

Robustness to distributional shifts – this is the perrennial problem where AI or DNNs are trained on one dataset but over time the real world changes and the data it’s now seeing has shifted (distribution) to something else. This often leads to DNNs not operating properly over time or having many more errors in deployment than it did during training. This is probably the one problem in this list that is undergoing more research to try to rectify than any of the others because it impacts just about every ML/AI solution currently deployed in the world today. This robustness to distributional shifts problem is why many AI DNN systems require periodic retraining.

So now we know what to look for, now what

Each of these deserves probably a whole book or more to understand and try to address. The paper talks about all of these and points to some of the research or current directions trying to address them.

The researchers correctly point out that some of the above problems are more pressing when more complex ML/AI agents have more autonomous control over actions in the real world.

We don’t want our automotive automation driving us over a cliff just to see if it’s a better action than staying in the lane. But Go playing bots or article summarizers might be ok to be wrong occasionally if it could lead to better playing bots/more concise article summaries over time. And although exploration is mostly a problem during training, it’s not to say that such activities might not also occur during deployment to probe for distributional shifts or other issues.

However, as we start to see more complex ML AI solutions controlling more activities, the issue of AI safety are starting to become more pressing. Autonomous cars are just one pressing example. But recent introductions of sorting robots, agricultural bots, manufacturing bots, nursing bots, guard bots, soldier bots, etc. are all just steps down a -(short) path of increasing complexity that can only end in some AGI bots running more parts (or all) of the world.

So safety will become a major factor soon, if it’s not already

Scares me the most

The first two on the list above scare me the most. Avoiding negative or unintentional side effects and reward hacking.

I suppose if we could master scalable oversight we could maybe deal with all of them better as well. But that’s defense. I’m all about offense and tackling the problem up front rather than trying to deal with it after it’s broken.

Negative side effects

Negative side effects is a rather nice way of stating the problem of having your ML destroy the world (or parts of it) that we need to live.

One approach to dealing with this problem is to define or train another AI/ML agent to measure impacts the environment and have it somehow penalize the original AI/ML for doing this. The learning approach has some potential to be applied to numerous ML activities if it can be shown to be safe and fairly all encompassing.

Another approach discussed in the paper is to inhibit or penalize the original ML actions for any actions which have negative consequences. One approach to this is to come up with an “empowerment measure” for the original AI/ML solution. The idea would be to reduce, minimize or govern the original ML’s action set (or potential consequences) or possible empowerment measure so as to minimize its ability to create negative side effects.

The paper discusses other approaches to the problem of negative side effects, one of which is having multiple ML (or ML and human) agents working on the problem it’s trying to solve together and having the ability to influence (kill switch) each other when they discover something’s awry. And the other approach they mention is to reduce the certainty of the reward signal used to train the ML solution. This would work by having some function that would reduce the reward if there are random side effects, which would tend to have the ML solution learn to avoid these.

Neither of these later two seem as feasible as the others but they are all worthy of research.

Reward hacking

This seems less of a problem to our world than negative side effects until you consider that if an ML agent is able to manipulate its reward code, it’s probably able to manipulate any code intending to limit potential impacts, penalize it for being more empowered or manipulate a human (or other agent) with its hand over the kill switch (or just turn off the kill switch).

So this problem could easily lead to a break out of any of the other problems present on the list of safety problems above and below. An example of reward hacking is a game playing bot that detects a situation that leads to buffer overflow and results in win signal or higher rewards. Such a bot will no doubt learn how to cause more buffer overflows so it can maximize its reward rather than learn to play the game better.

But the real problem is that a reward signal used to train a ML solution is just an approximation of what’s intended. Chess programs in the past were trained by masters to use their opening to open up the center of the board and use their middle and end game to achieve strategic advantages. But later chess and go playing bots just learned to checkmate their opponent and let the rest of the game take care of itself.

Moreover, (board) game play is relatively simple domain to come up with proper reward signals (with the possible exception of buffer overflows or other bugs). But car driving bots, drone bots, guard bots, etc., reward signals are not nearly as easy to define or implement.

One approach to avoid reward hacking is to make the reward signaling process its own ML/AI agent that is (suitably) stronger than the ML/AI agent learning the task. Most reward generators are relatively simple code. For instance in monopoly, one that just counts the money that each player has at the end of the game could be used to determine the winner (in a timed monopoly game). But rather than having a simple piece of code create the reward signal use ML to learn what the reward should be. Such an agent might be trained to check to see if more or less money was being counted than was physically possible in the game. Or if property was illegally obtained during the game or if other reward hacks were done. And penalize the ML solution for these actions. These would all make the reward signal depend on proper training of that ML solution. And the two ML solutions would effectively compete against one another.

Another approach is to “sandbox” the reward code/solution so that it is outside of external and or ML/AI influence. Possible combining the prior approach with this one might suffice.

Yet another approach is to examine the ML solutions future states (actions) to determine if any of them impact the reward function itself and penalize it for doing this. This assumes that the future states are representative of what it plans to do and that some code or some person can recognize states that are inappropriate.

Another approach discussed in the paper is to have multiple reward signals. These could use multiple formulas for computing the multi-faceted reward signal and averaging them or using some other mathematical function to combine them into something that might be more accurate than one reward function alone. This way any ML solution reward hacking would need to hack multiple reward functions (or perhaps the function that combines them) in order to succeed.

The one IMHO that has the most potential but which seems the hardest to implement is to somehow create “variable indifference” in the ML/AI solution. This means having the ML/AI solution ignore any steps that impact the reward function itself or other steps that lead to reward hacking. The researchers rightfully state that if this were possible then many of the AI safety concerns could be dealt with.

There are many other approaches discussed and I would suggest reading the paper to learn more. None of the others, seem simple or a complete solution to all potential reward hacks.

~~~

The paper goes into the same or more level of detail with the other three “concrete safety” issues in AI.

In my last post (see part 5 link above) I thought I was going to write about Human Compatible (AI) by S. Russell book’s discussion AI safety. But then I found the “Concrete problems in AI safety paper (see link above) and thought it provided a better summary of AI safety issues and used it instead. I’ll try to circle back to the book at some later date.

Photo Credit(s):

Is AGI just a question of scale now – AGI part-5

Read two articles over the past month or so. The more recent one was an Economist article (AI enters the industrial age, paywall) and the other was A generalist agent (from Deepmind). The Deepmind article was all about the training of Gato, a new transformer deep learning model trained to perform well on 600 separate task arenas from image captioning, to Atari games, to robotic pick and place tasks.

And then there was this one tweet from Nando De Frietas, research director at Deepmind:

Someone’s opinion article. My opinion: It’s all about scale now! The Game is Over! It’s about making these models bigger, safer, compute efficient, faster at sampling, smarter memory, more modalities, INNOVATIVE DATA, on/offline, … 1/N

I take this to mean that AGI is just a matter of more scale. Deepmind and others see the way to attain AGI is just a matter of throwing more servers, GPUs and data at the training the model.

We have discussed AGI in the past (see part-0 [ish], part-1 [ish], part-2 [ish], part-3ish and part-4 blog posts [We apologize, only started numbering them at 3ish]). But this tweet is possibly the first time we have someone in the know, saying they see a way to attain AGI.

Transformer models

It’s instructive from my perspective that, Gato is a deep learning transformer model. Also the other big NLP models have all been transformer models as well.

Gato (from Deepmind), SWITCH Transformer (from Google), GPT-3/GPT-J (from OpenAI), OPT (from meta), and Wu Dai 2.0 (from China’s latest supercomputer) are all trained on more and more text and image data scraped from the web, wikipedia and other databases.

Wikipedia says transformer models are an outgrowth of RNN and LSTM models that use attention vectors on text. Attention vectors encode, into a vector (matrix), all textual symbols (words) prior to the latest textual symbol. Each new symbol encountered creates another vector with all prior symbols plus the latest word. These vectors would then be used to train RNN models using all vectors to generate output.

The problem with RNN and LSTM models is that it’s impossible to parallelize. You always need to wait until you have encountered all symbols in a text component (sentence, paragraph, document) before you can begin to train.

Instead of encoding this attention vectors as it encounters each symbol, transformer models encode all symbols at the same time, in parallel and then feed these vectors into a DNN to assign attention weights to each symbol vector. This allows for complete parallelism which also reduced the computational load and the elapsed time to train transformer models.

And transformer models allowed for a large increase in DNN parameters (I read these as DNN nodes per layer X number of layers in a model). GATO has 1.2B parameters, GPT-3 has 175B parameters, and SWITCH Transformer is reported to have 7X more parameters than GPT-3 .

Estimates for how much it cost to train GPT-3 range anywhere from $10M-20M USD.

AGI will be here in 10 to 20 yrs at this rate

So if it takes ~$15M to train a 175B transformer model and Google has already done SWITCH which has 7-10X (~1.5T) the number of GPT-3 parameters. It seems to be an arms race.

If we assume it costs ~$65M (~2X efficiency gain since GPT-3 training) to train SWITCH, we can create some bounds as to how much it will cost to train an AGI model.

By the way, the number of synapses in the human brain is approximately 1000T (See Basic NN of the brain, …). If we assume that DNN nodes are equivalent to human synapses (a BIG IF), we probably need to get to over 1000T parameter model before we reach true AGI.

So my guess is that any AGI model lies somewhere between 650X to 6,500X parameters beyond SWITCH or between 1.5Q to 15Q model parameters.

If we assume current technology to do the training this would cost $40B to $400B to train. Of course, GPUs are not standing still and NVIDIA’s Hopper (introduced in 2022) is at least 2.5X faster than their previous gen, A100 GPU (introduced in 2020). So if we waited a 10 years, or so we might be able to reduce this cost by a factor of 100X and in 20 years, maybe by 10,000X, or back to where roughly where SWITCH is today.

So in the next 20 years most large tech firms should be able to create their own AGI models. In the next 10 years most governments should be able to train their own AGI models. And as of today, a select few world powers could train one, if they wanted to.

Where they get the additional data to train these models (I assume that data counts would go up linearly with parameter counts) may be another concern. However, I’m sure if you’re willing to spend $40B on AGI model training, spending a few $B more on data acquisition shouldn’t be a problem.

~~~~

At the end of the Deepmind article on Gato, it talks about the need for AGI safety in terms of developing preference learning, uncertainty modeling and value alignment. The footnote for this idea is the book, Human Compatible (AI) by S. Russell.

Preference learning is a mechanism for AGI to learn the “true” preference of a task it’s been given. For instance, if given the task to create toothpicks, it should realize the true preference is to not destroy the world in the process of making toothpicks.

Uncertainty modeling seems to be about having AI assume it doesn’t really understand what the task at hand truly is. This way there’s some sort of (AGI) humility when it comes to any task. Such that the AGI model would be willing to be turned off, if it’s doing something wrong. And that decision is made by humans.

Deepmind has an earlier paper on value alignment. But I see this as the ability of AGI to model human universal values (if such a thing exists) such as the sanctity of human life, the need for the sustainability of the planet’s ecosystem, all humans are created equal, all humans have the right to life, liberty and the pursuit of happiness, etc.

I can see a future post is needed soon on Human Compatible (AI).

Photo Credit(s):

Living forever – the end of evolution part-3

Read an article yesterday on researchers who had been studying various mammals and trying to determine the number of DNA mutations they accumulate at about the time they die. The researchers found that after about 800 mutations for mole rats, they die, see Nature article Somatic mutation rates scale with lifespan across mammals and Telegraph article reporting on the research, Mystery of why humans die around 80 may finally be solved.

Similarly, at around 3500 mutations humans die, at around 3000 mutations dogs die and at around 1500 mutations mice die. But the real interesting thing is that the DNA mutation rates and mammal lifespan are highly (negatively) correlated. That is higher mutation rates lead to mammals with shorter life spans.

C. Linear regression of somatic substitution burden (corrected for analysable genome size) on individual age for dog, human, mouse and naked mole-rat samples. Samples from the same individual are shown in the same colour. Regression was performed using mean mutation burdens per individual. Shaded areas indicate 95% confidence intervals of the regression line. A shows microscopic images of sample mammalian cels and the DNA strands examined and B shows the distribution of different types of DNA mutations (substitutions or indels [insertion/deletions of DNA]).

The Telegraph article seems to imply that at 800 mutations all mammals die. But the Nature Article clearly indicates that death is at different mutation counts for each different type of mammal.

Such research show one way on how to live forever. We have talked about similar topics in the distant past see …-the end of evolution part 1 & part 2

But in any case it turns out that one of the leading factors that explains the average age of a mammal at death is its DNA mutation rate. Again, mammals with lower DNA mutation rates live longer on average and mammals with higher DNA mutation rates live shorter lives on average.

Moral of the story

if you want to live longer reduce your DNA mutation rates.

c, Zero-intercept LME regression of somatic mutation rate on inverse lifespan (1/lifespan), presented on the scale of untransformed lifespan (axis). For simplicity, the axis shows mean mutation rates per species, although rates per crypt were used in the regression. The darker shaded area indicates 95% CI of the regression line, and the lighter shaded area marks a twofold deviation from the line. Point estimate and 95% CI of the regression slope (k), FVE and range of end-of-lifespan burden are indicated.

All astronauts are subject to significant forms of cosmic radiation which can’t help but accelerate DNA mutations. So one would have to say that the risk of being an astronaut is that you will die younger.

Moon and Martian colonists will also have the same problem. People traveling, living and working there will have an increased risk of dying young. And of course anyone that works around radiation has the same risk.

Note, the mutation counts/mutation rates, that seem to govern life span are averages. Some individuals have lower mutation rates than their species and some (no doubt) have higher rates. These should have shorter and longer lives on average, respectively.

Given this variability in DNA mutation rates, I would propose that space agencies use as one selection criteria, the astronauts/colonists DNA mutation rate. So that humans which have lower than average DNA mutation rates have a higher priority of being selected to become astronauts/extra-earth colonists. One could using this research and assaying astronauts as they come back to earth for their DNA mutation counts, could theoretically determine the impact to their average life span.

In addition, most life extension research is focused on rejuvenating cellular or organism functionality, mainly through the use of young blood, other select nutrients, stem cells that target specific organs, etc. For example, see MIT Scientists Say They’ve Invented a Treatment That Reverses Hearing Loss which involves taking human cells, transform them into stem cells (at a certain maturity) and injecting them into the ear drum.

Living forever

In prior posts on this topic (see parts 1 &2 linked above) we suggested that with DNA computation and DNA storage (see or listen rather, to our GBoS podcast with CTO of Catalog) now becoming viable, one could potentially come up with a DNA program that could

  • Store an individuals DNA using some very reliable and long lived coding fashion (inside a cell or external to the cell) and
  • Craft a DNA program that could periodically be activated (cellular crontab) to access the stored DNA for the individual(in the cell would be easiest) and use this copy to replace/correct any DNA mutation throughout an individuals cells.

And we would need a very reliable and correct copy of that person’s DNA (using SHA256 hashing, CRCs, ECC, Parity and every other way to insure the DNA as captured is stored correctly forever). And the earlier we obtained the DNA copy for an individual human, the better.

Also, we would need a copy of the program (and probably the DNA) to be present in every cell in a human for this to work effectively. .

However, if we could capture a good copy of a person’s DNA early in their life we could, perhaps, sometime later, incorporate DNA code/program into the individual to use this copy and sweep through a person’s body (at that point in time) and correct any mutations that have accumulated to date. Ultimately, one could schedule this activity to occur like an annual checkup.

So yeah, life extension research can continue along the lines they are going and you can have a bunch of point solutions for cellular/organism malfunction OR it can focus on correctly copying and storing DNA forever and creating a DNA program that can correct DNA defects in every individual cell, using the stored DNA.

End of evolution

Yes mammals and that means any human could live forever this way. But it would signify the start of the end of evolution for the human species. That is whenever we captured their DNA copy, from that point on evolution (by mutating DNA) of that individual and any offspring of that individual could no longer take place. And if enough humans do this, throughout their lifespan, it means the end of evolution for humanity as a species

This assumes that evolution (which is natural variation driven by genetic mutation & survival of the fittest) requires DNA variation (essentially mutation) to drive the species forward.

~~~~

So my guess, is either we can live forever and stagnate as a species OR live normal lifespans and evolve as a species into something better over time. I believe nature has made it’s choice.

The surprising thing is that we are at a point in humanities existence where we can conceive of doing away with this natural process – evolution, forever.

Photo Credit(s):

Deepmind does code – part 1: the data

1st, let me express my and my fellow coders/programmers disappointment that Deepmind would take on coding. There are many other white collar work domains that need to be conquered before coding.

2nd, let me apologize for the lack of blog posts lately, all I can say is, business is picking up.

Saw an article over the last couple of weeks on Deepmind creating AlphaCode an artificial intelligence coding application which they used to enter coding contests and achieved an average 1238 rating or better than 54% of code contest participants.

I can’t recall where I first saw the news but Deepmind has a pretty decent blog post on AlphaCode and they have published a pre-print of their research paper on AlphaCode as well. I plan on discussing AlphaCode in detail over a couple of posts. This will be the first installment on where they got the data to train their models..

AlphaCode is a transformer-based language models (see: Wikipedia: Transformer (machine learning model) article) that translates a code competition problem statement into code, or a program that can when executed solve the problem statement. In order to train AlphaCode Deepmind first needed to obtain lots of source code.

It’s all about the (training) data

The first step in Deep Learning model generation is gathering data to train the model. Now where would Google’s Deepmind go to gather coding data – well GitHub, a public repository of all things software, of course.

They used GitHub data to pre-train their model(s) but also scraped code (problem statements & test cases) from published code contests to fine tune their model

Deepmind has released their fine-tuning, CodeContests training data for AlphaCode, on GitHub. So as to support other organiazations in creating AI models for coding.

GitHub source to the (pre-training) rescue

There are a couple of problems with using GitHub source code for training:

  • Github code is in any source code language the author feels most appropriate to use.
  • GitHub code is not guaranteed to work correctly.
  • GitHub code is not guaranteed to be completed code.
  • GitHub code represents a wide range of coding skill.
  • GitHub code doesn’t always come with a problem statement.

But the use of GitHub in their pre-training data set is intended to give their transformer-based language model some capability to understand (learn) what coding is all about, what a proper syntax would be, what a proper coding sequence would be, etc.

The AlphaCode team took a snapshot of selected git source repos. This meant they only scrapped Git repos that contained C++, C#, Go, Java, JavaScript, Lua, PHP, Python, Ruby, Rust, Scala, and TypeScript languages. They also dropped from pre-training data any source code with files larger than 1MB or that had any lines larger than 1000 characters. This was done to avoid using any machine generated code. They also stripped all the white space out of the selected source code files and compared them to eliminate all duplicated code.

Their final pre-training dataset was 715GB of data over 86 million source files.

Although, unstated, we would guess that the AlphaCode team used the GitHub repo’s README.md file as a surrogate for the solution description. Unclear what else could have been used unless they generated it automatically from extracting semantic content or generating a summarization of the README.md files.

Excerpt from Deepmind’s competitive code contest source code&problem statements README.md file

The (pre-)training data can be used to train a transformer-based language models. These are used today to provide language translation. In AlphaCode’s case they wanted to create, a code transformer-based model, that translates a specification of a coding problem into source code to solve that problem.

For language translation models, they use text files, in different languages, but represent the same law or information. and notably, are human generated translations.

One challenge with using internet scraped data for training is that it can easily contain actual solutions’ verbatim’ for the problems the model is trying to solve. In order to avoid copying these solutions entirely they decided to split their data into a training set, validation set and test set on a time basis. This way the training data used source code/problem statements only from a period of time prior to the validation set. Ditto for the training-validation data with the test data.

To show that this approach (using a time point to split the data) worked they trained a 1B parameter AlphaCode transformer on two different training-validation datasets, one where the validation data was selected at random (the normal approach to selecting validation data),, the “random” split and the other, with selecting validation data that only occurred some time after the training data, the “temporal’ split. The 1B AlphaCode transformer was able to properly code 0.8% of the problems using a 13K sample of 86M source files/problem statements on the random split, but only 0% on the temporal split.

So much for pre-training, let’s discuss fine tuning

AlphaCode was going to get nowhere with a 0% solve rate (ok this was based on a 13K sample and only a 1B parameter model) but they realized that Git code was only going to get them so far. (ok conjecture on my part)

So fine-tuning beyond pre-training (Git derived) data was needed. So the AlphaCode team turned to code competition source code/problem statement data.

Most code contests publish source code submissions as well as the problem statements and sample test cases. Bp scrapping these, Deepmind was able to attain a very well annotated dataset they could use to fine-tuning their AlphaCode transformer model.

They again used a temporal split for training/validation/test data. But they were also able to add metadata to their data that indicated whether the code solved the problem statement.

Code competitions also publish tests for the problem statement. Having the tests, a human can use them to validate whether their code at least works against the tests. Code contests also have a set of more (sophisticated) hidden tests that they use internally to validate code submissions.

This test data will become important later on in the models operation, which will be discussed in a future post, but suffice it to say that AlphaCode uses the public tests (and mutations of these) to validate AlphaCode generated source code before submitting them..

This fine-tuning dataset is available in the GitHub repo (linked to above) that Deepmind has created/curated for others to work with.

Another nicety of this fine-tuning data is they have proper, human created, problem statements to work from rather than README.md surrogates.

In part-2 we plan to describe the transformer-based model that was created for AlphaCode and at some point, discuss how they used testing in their code submissions.

Once again, all my information comes from Deepmind’s pre-print on their AlphaCode project (linked to above).

Any comments, please don’t hesitate to let me know.

Photo Credits:

AI navigation goes with the flow

Read an article the other day (Engineers Teach AI to Navigate Ocean with Minimal Energy) about a simulated robot that was trained to navigate 2D turbulent water flow to travel between locations. They used a combination reinforcement learning with a DNN derived policy. The article was reporting on a Nature Communications open access paper (Learning efficient navigation in vortical flow fields).

The team was attempting to create an autonomous probe that could navigate the ocean and other large bodies of water to gather information. I believe ultimately the intent was to provide the navigational smarts for a submersible that could navigate terrestrial and non-terrestrial oceans.

One of the biggest challenges for probes like this is to be able to navigate turbulent flow without needing a lot of propulsive power and using a lot of computational power. They said that any probe that could propel itself faster than the current could easily travel wherever it wanted but the real problem was to go somewhere with lower powered submersibles.. As a result, they set their probe to swim at a constant speed at 80% of the overall simulated water flow.

Even that was relatively feasible if you had unlimited computational power to train and inference with but trying to do this on something that could fit in a small submersible was a significant challenge. NLP models today have millions of parameters and take hours to train with multiple GPU/CPU cores in operation and lots of memory Inferencing using these NLP models also takes a lot of processing power.

The researchers targeted the computational power to something significantly smaller and wished to train and perform real time inferencing on the same hardware. They chose a “Teensy 4.0 micro-controller” board for their computational engine which costs under $20, had ~2MB of flash memory and fit in a space smaller than 1.5″x1.0″ (38.1mm X 25.4mm).

The simulation setup

The team started their probe turbulent flow training with a cylinder in a constant flow that generated downstream vortices, flowing in opposite directions. These vortices would travel from left to right in the simulated flow field. In order for the navigation logic to traverse this vortical flow, they randomly selected start and end locations on different sides.

The AI model they trained and used for inferencing was a combination of reinforcement learning (with an interesting multi-factor reward signal) and a policy using a trained deep neural network. They called this approach Deep RL.

For reinforcement learning, they used a reward signal that was a function of three variables: the time it took, the difference in distance to target and a success bonus if the probe reached the target. The time variable was a penalty and was the duration of the swim activity. Distance to target was how much the euclidean distance between the current probe location and the target location had changed over time. The bonus was only applied when the probe was in close proximity to the target location, The researchers indicated the reward signal could be used to optimize for other values such as energy to complete the trip, surface area traversed, wear and tear on propellers, etc.

For the reinforcement learning state information, they supplied the probe and the target relative location [Difference(Probe x,y, Target x,y)], And whatever sensor data being tested (e.g., for the velocity sensor equipped probe, the local velocity of the water at the probe’s location).

They trained the DNN policy using the state information (probe start and end location, local velocity/vorticity sensor data) to predict the swim angle used to navigate to the target. The DNN policy used 2 internal layers with 64 nodes each.

They benchmarked the Deep RL solution with local velocity sensing against a number of different approaches. One naive approach that always swam in the direction of the target, one flow blind approach that had no sensors but used feedback from it’s location changes to train with, one vorticity sensor approach which sensed the vorticity of the local water flow, and one complete knowledge approach (not shown above) that had information on the actual flow at every location in the 2D simulation

It turned out that of the first four (naive, flow-blind, vorticity sensor and velocity sensor) the velocity sensor configured robot had the highest success rate (“near 100%”).

That simulated probe was then measured against the complete flow knowledge version. The complete knowledge version had faster trip speeds, but only 18-39% faster (on the examples shown in the paper). However, the knowledge required to implement this algorithm would not be feasible in a real ocean probe.

More to be done

They tried the probes Deep RL navigation algorithm on a different simulated flow configuration, a double gyre flow field (sort of like 2 circular flows side by side but going in the opposite directions).

The previously trained (on cylinder vortical flow) Deep RL navigation algorithm only had a ~4% success rate with the double gyre flow. However, after training the Deep RL navigation algorithm on the double gyre flow, it was able to achieve a 87% success rate.

So with sufficient re-training it appears that the simulated probe’s navigation Deep RL could handle different types of 2D water flow.

The next question is how well their Deep RL can handle real 3D water flows, such as idal flows, up-down swells, long term currents, surface wind-wave effects, etc. It’s probable that any navigation for real world flows would need to have a multitude of Deep RL trained algorithms to handle each and every flow encountered in real oceans.

However, the fact that training and inferencing could be done on the same small hardware indicates that the Deep RL could possibly be deployed in any flow, let it train on the local flow conditions until success is reached and then let it loose, until it starts failing again. Training each time would take a lot of propulsive power but may be suitable for some probes.

The researchers have 3D printed a submersible with a Teensy microcontroller and an Arduino controller board with propellers surrounding it to be able to swim in any 3D direction. They have also constructed a water tank for use for in real life testing of their Deep RL navigation algorithms.

Picture credit(s):

BEHAVIOR, an in-home robot, benchmark

As my readers probably already know, I’m a long time benchmark geek. So when I recently read an article out of Stanford (AI Experts Establish the “North Star” for Domestic Robotics Field) where a research team there developed a new robotic benchmark, I was interested. The new robotics benchmark is called BEHAVIOR which was documented in an ARXIV.org article (see: BEHAVIOR: Benchmark for Everyday Household Activities in Virtual, Interactive, and ecOlogical enviRonments). It essentially uses real world data to identify domestic work activities that any robot would need to perform in a home.

The problems with robot benchmarks

The problem with benchmarks are multi-faceted:

  • How realistic are the workloads used to evaluate the systems being measured?
  • How accurate are the metrics used to rank and judge benchmark submissions?
  • How costly/complex is it to run a benchmark?
  • How are submissions audited and are they reproducible?.
  • Where are benchmark results reported and are they public?

And of course robotics brings in it’s own issues that makes benchmarking more difficult:

  • What sensors does the robot have to understand how to complete tasks?
  • What manipulators does the robot have to perform the tasks required of it?
  • Do the robots move in the environment and if so, how do the robots move?
  • Does the robot perform the task in the real world on in a simulated environment.

And of course, when using a simulated environment, how realistic is it.

BEHAVIOR with iGibson (see below) seem to answer many of these concerns for an in home robot benchmarking.

What is BEHAVIOR?

First, BEHAVIOR’s home making tasks were selected from an American Time Use Survey maintained by the USA Bureau of Labor Statistics which identifies tasks Americans perform in their homes. With BEHAVIOR 1.0 there are 100 tasks ranging from building a fruit basket to cleaning a toilet, and just about everything in between. I didn’t see any cooking or mixing drinks tasks but maybe those will be added.

Second, BEHAVIOR uses a predicate logic, called BDDL (BEHAVIOR Domain Definition Language) to define initial conditions for tasks such as tables, chairs, books, etc located in the room, where objects need to be placed, and successful completion goals or what task completion should look like.

BEHAVIOR uses 15 different rooms or scenes in their benchmark, such as a kitchen, garage, study, etc. Each of the 100 tasks are performed in a specific room.

BEHAVIOR incorporates 1217 different objects in 391 categories. Once initial conditions are defined for a task, BEHAVIOR essentially randomly selects different object for the task and randomly locates them throughout the room.

In order to run the benchmark, one could conceivably create a real room, with all the objects and have them placed according to BEHAVIOR BDDL’s randomly assigned locations with a robot physically present in the room and have it perform the assigned task OR one could use a simulation engine and have the robot run the task in the simulation environment, with simulated room, objects and robot.

It appears as if BEHAVIOR could operate in any robotics simulation environment but has been currently implemented in Stanford’s open source robotics simulation engine called iGibson 2.0 (see: iGibson 2.0: Object-Centric Simulation for Robot Learning of Everyday Household Tasks and iGibson 2.0 website). iGibson uses the Bullet real time physics engine for realistic physical environment simulation.

A robot operating within iGibson is provided a 3D rendering of the room and objects in images or LIDAR sensor scans. It can then identify the objects that it needs to manipulate to perform the tasks. One can define the robot simulated sensors and manipulators in iGibnot 2.0 and it’s written in Python, is open source (GitHub Repo) and can be installed to run on (Ubuntu 16.04) Linux, Windows (10) or Mac (10.15) systems.

Finally, BEHAVIOR uses a set of metrics to determine how well a robot has performed its assigned task. Their first metric is success score defined as the fraction of goal conditions satisfied by the robot performing the task. Such as the number of dishes properly cleaned and placed in the drying rack divided by the total number of dishes for a “washing dishes” task. And their second metric is a set of efficiency metrics, like time to complete a task, sum total of object distance moved during the task, how well objects are arranged at task completion (is the toilet seat down…), etc.

Another feature of iGibson 2.0 is that it offers the ability to record a human (in VR) doing a task in its simulated environment. So if your robotic system is able to learn by example, then iGibson could be used to provide training data for an activity.

~~~~

A couple of additions to the BEHAVIOR benchmark/iGibson simulation environment that I would like to see:

  • There ought to be a way to construct a house/apartment where multiple rooms are arranged in a hierarchy, i.e., rooms associated with floors with connections using hallways, doors, stairs, etc. between them. This way one could conceivably have a define a set of homes/apartments (let’s say 5) that a robot would perform its tasks in.
  • They need a task list to drive robot activities. Assume that there’s some amount of time let’s say 8-12 hours that a robot is active and construct a series of tasks that need to be accomplished during that period.
  • Robots should be placed in the rooms/apartments/homes at random with random orientation and then they would have to navigate through rooms/passageways to the rooms to perform the tasks.
  • They need to add pet/human avatars in the rooms throughout a home. These would represent real time obstacles to task completion/navigation as well as add more tasks associated with caring for pets/humans.
  • They need the ability to add non-home rooms that could encompass factory floors, emergency response debris fields, grocery stores, etc. and their own unique set of tasks for each of these so that it could be used as a benchmark for more than just domestic robots.

Aside from the above additions to BEHAVIOR/iGibson 2.0, there’s the question of the organization that manages the benchmark and submissions. There needs to be a website/place to publish benchmark results for a robot AND a mechanism to audit results for accuracy to insure fair play.

Typically this would be associated with an organization responsible for publishing and auditing submissions as well as guide further development of BEHAVIOR/iGibson 2.0. BEHAVIOR 1.0 is not the end but it’s a great start at providing realistic tasks that any domestic robot would need to perform. 

Benchmarks have always aided the development and assessment of new technologies. Having a in home robot benchmark like BEHAVIOR makes getting domestic robots that do what we want them to do a more likely possibility someday.

There’s a new benchmark in town and it signals the dawning of the domestic robot age.

Photo Credit(s):