Fall SNWUSA 2013

Here’s my thoughts on SNWUSA which occurred this past week in the Long Beach Convention Center.

First, it was a great location. I saw a number of users I haven’t seen at SNWUSA ever before, some of which I have known for years from other (non-storage) venues.

Second, the exhibit hall was scantly populated. There were no major storage vendors at the show at all. Gold sponsors included NEC, Riverbed, & Sepaton, representing the largest exhibiters presenn. Making up the next (Contributing) tier were Western Digital, Toshiba, Active Archive Alliance, and LTO consortium with a smattering of smaller companies.  Finally, there were another 12 vendors with kiosks around the floor, with the largest there being Veeam Software.

I suspect VMWorld Europe happening the same time in Barcelona might have had something to do with the sparse exhibit floor but the trend has been present for the past few shows.

That being said there were still a few surprises in store, at least for me.  Two of the most interesting ones were:

  • Coho Data who came out of stealth with a scale out, RAIN (Redundant array of independent nodes) based storage cluster, with distributed, mirrored customer data across nodes and software defined networking. They currently support NFS for VMware with a management UI reminiscent of IOS 7 sans touch support. The product comes as a series of nodes with SSDs, disk storage and SDN. The SDN allows Coho Data to relocate front-end (client) connections to where the customer data lies. The distributed, mirrored backend storage provides redundancy in the case of a node/disk failure, at which time the system understands what data is now at risk and rebuilds the now-mirorless data onto other nodes. It reminds me a lot of Bycast/Archivas like architectures, with SDN and NFS support. I suppose the reason they are supporting VMware VMDKs is that the files are fairly large and thus easier to supply.
  • Cloud Physics was not exhibiting but they sponsored a break. As such, they were there talking with analysts and the press about their product. Their product installs as a VMware VM service and propagates VMware management agents to ESX servers which then pipe information back to their app about how your VMware environment is running, how VMs are performing, how your network and storage are performing for the VMs running, etc. This data is then sent to the cloud, where it’s anonymized. In the cloud, customers can use apps (called Cards) to analyze this data in the cloud, which can help them understand problem areas, predict what configuration changes can do for them, show them how VMs are performing, etc. It essentially is logging all this information to the cloud and providing ways to analyze the data to optimize your VMware environment.

Coming in just behind these two was Jeda Networks with their Software Defined Storage Network (SDSN). They use commodity (OpenFlow compatible) 10GbE switches to support a software FCoE storage SAN. Jeda Networks say that over the past two years,  most 10GbE switch hardware have started to support DCB in hardware and with that in place, plus OpenFlow compatibility, they can provide a SDSN on top of them just by emulating a control layer for FCoE switches. Of course one would still need FCoE storage and CNAs but with that in place one could use much cheaper switches to support FCoE.

CloudPhysics has a subscription based pricing model which offers three tiers:

  • Free where you get their Vapp, the management agents and a defined set of Free Card Apps for no cost;
  • Standard level where you get all the above plus a set of Card Apps which provide more VMware managability for $50/ESX server/Month; and
  • Enterprise level where you get all the above plus all the Card Apps presently available for $150/ESX server/Month.

Jeda networks and Coho Data are still developing their pricing and had none they were willing to disclose.

One of the CloudPhysics Card apps could predict how certain VMs would benefit from host based (PCIe or SSD) IO caching. They had a chart which showed working set inflection points for (I think) one VM running an OLTP application.  I have asked for this chart to discuss further in a future post.  But although CloudPhysics has the data to produce such a chart, the application shows three potential break points where say adding 500MB, 2000MB or 10000MB of SSD cache can speed up application performance by 10%, 30% or 50% (numbers here made up for example purposes and not off the chart they showed me).

A few other companies made announcements at the show. For example, Sepaton announced their new VirtuoSO, scale out hybrid reduplication appliance.

That’s about it. I would have to say that SNW needs to rethink their business model, frequency of stows or what they are trying to do at their conferences. However, on the plust side, most of the users I talked with came away with a lot of information and thought the show was worthwhile and I came away with a few surprises.

~~~~

Comments?

Is cloud a leapfrog technology?

Mobile Phone with Money in Kenya by whiteafrican (cc) (from Flickr)
Mobile Phone with Money in Kenya by whiteafrican (cc) (from Flickr)

Read an article today about Safaricom creating a domestic cloud service offering outside Nairobi in Kenya (see Chasing the African Cloud).

But this got me to thinking that cloud services may be just like mobile phones in that developing countries can use it to skip over older technologies like wired phone lines and gain advantages of more recent technology that offers similar services, the mobile phone without the need to bother with the expense and time to build telephone wires across the land.

Leapfrogging IT infrastructure buildout

In the USA, cloud computing, cloud storage, and SAAS services based in the cloud are essentially taking the place of small business IT infrastructure services today.  Many small businesses skip over building their own IT infrastructures, absolutely necessary years ago for email, web services, back office processing, etc., and are moving directly to using cloud service providers for these capabilities.

In some cases, it’s even more than  just the IT infrastructure, as the application, data and processing services all can be supplied from SAAS providers.

Today, it’s entirely possible to run a complete, very large business without owning a stitch of IT infrastructure (other than desktops, laptops, tablets and mobile phones) by doing this

Developing countries can show us the way

Developing countries can do much the same for their economic activity. Rather than have their small businesses spend time building out homegrown IT infrastructure just lease it out from one or more domestic (or international) cloud service providers and skip the time, effort and cost of doing it your self.

Hanging out with Kenya Techies by whiteafrican (cc) (from Flickr)
Hanging out with Kenya Techies by whiteafrican (cc) (from Flickr)

Given this dynamic, cloud service vendors ought to be focusing more time and money on developing countries. They should adopt such services more rapidly because they don’t have the sunk costs in current, private IT infrastructure and applications.

China moves into the cloud

I probably should have caught on earlier.  Earlier this year I was at a vendor analyst meeting, having dinner with a colleague from the China Center for Information Industry Development (CCID) Consulting.  He mentioned that Cloud was one of a select set of technologies that China was focusing considerable state and industry resources on.   At the time, I just thought this was prudent thinking to keep up with industry trends. What I didn’t realize at the time was that the cloud could be a leap frog technology that would help them avoid a massive IT infrastructure build out in millions of small companies in their nation.

One can see that early adopter nations have understood that with the capabilities of mobile phones they can create a fully functioning telecommunications infrastructure almost overnight.  Much the same can be done with cloud computing, storage and services.

Now if they can only get WiMAX up and running to eliminate cabling their cities for internet access.

—-

Comments?

Is cloud computing/storage decentralizing IT, again?

IBM Card Sorter by Pargon (cc) (From Flickr)
IBM Card Sorter by Pargon (cc) (From Flickr)

Since IT began, over the course of years, computing services have run through massive phases of decentralization out to departments followed by consolidation back to the data center.  In the early years of computing, from the 50s to the 60s, the only real distributed solution to mainframe or big iron data processing was sophisticated card sorters.

Consolidation-decentralization Wars

But back in the 70s the consolidation-decentralization wars were driven by the availability of mini-computers competing with mainframes for applications and users.  During the 80s, the PC emerged to become the dominant decentralizer taking applications away from mainframes and big servers and in the 90s it was small, off-the-shelf linux servers and continuing use of high-powered PCs that took applications out from data center control.

In those days it seemed that most computing decentralization was driven by the ease of developing applications for these upstarts and the relative low-cost of the new platforms.

Server virtualization, the final solution

Since 2000, another force has come to solve the consolidation quandry – server virtualization.  With server virtualization such as from VMware, Citrix and others, IT has once again driven massive consolidation outlying departmental computing services to bring them all, once again, under one roof, centralizing IT control.  Virtualization provided an optimum answer to the one issue that decentralization could never seem to address – utilization efficiency.  With most departmental servers being used at 5-10% utilization, virtualzation offered demonstrable cost savings when consolidated onto data center hardware.

Cloud computing/storage mutiny

But with the insurrection that is cloud computing and cloud storage once again, departments can easily acquire storage and computing resources on demand and utilization is no longer an issue because it’s a “pay only for what you use” solution. And they don’t even need to develop their own applications because SaaS providers can supply most of their application needs using cloud computing and cloud storage resources alone.

Virtualization was a great solution to the poor utilization of systems and storage resources. But with the pooling available with cloud computing and storage, utilization effectiveness occurs outside the bounds of the todays data center.  As such, with cloud services utilization effectiveness in $/MIP or $/GB can be approximately equivalent to any highly virtualized data center infrastructure (perhaps even better).  Thus, cloud services can provide these very same utilization enhancements at reduced costs out to any departmental user without the need for centralized data center services.

Other decentralization issues that cloud solves

Traditionally, the other problems with departmental computing services were lack of security and the unmanageability distributed service both of which held back some decentralization efforts but these are partially being addressed with cloud infrastructure today.  Insecurity continues to plague cloud computing but some cloud storage gateways (see Cirtas Surfaces and other cloud storage gateway posts) are beginning to use encryption and other cryptographic techniques to address these issues.  How this is solved for cloud computing is another question (see Securing the cloud – Part B).

Cloud computing and storage can be just as diffuse and difficult to manage as a proliferation of PCs or small departmental linux servers.  However, such unmanage-ability is a very different issue, one intrinsic to decentralization and much harder to address.  Although it’s fairly easy to get a bill for any cloud services, it’s unclear whether IT will be able to see all of them to manage it.  Also, nothing seems able to stop some department from signing up for SalesForce.com or even to use Amazon EC2 to support an application they need.  The only remedy, as far as I can see to this problem, is adherence to strict corporate policy and practice.  So unmanageability remains an ongoing issue for decentralized computing for some time to come.

—-

Nonetheless, it seems as if decentralization via the cloud is back, at least until the next wave of consolidation hits.  My guess for the next driver of consolidation is to make application development much easier and quicker to accomplish for centralized data center infrastructure – application frameworks anyone?

Comments?

Symantec's FileStore

Picture of old filing shelves to hold spare parts
Data Storage Device by BinaryApe (cc) (from flickr)
Earlier this week Symantec GA’ed their Veritas FileStore software. This software was an outgrowth of earlier Symantec Veritas Cluster File System and Storage Foundation software which were combined with new frontend software to create scaleable NAS storage.

FileStore is another scale-out, cluster file system (SO/CFS) implemented as NAS head via software. The software runs on a hardened Linux OS and can run on any commodity x86 hardware. It can be configured with up to 16 nodes. Also, it currently supports any storage supported by Veritas Storage Foundation which includes FC, iSCSI, and JBODs. Symantec claims FileStoreo has the broadest storage hardware compatibility list in the industry for a NAS head.

As a NAS head FileStore supports NFS, CIFS, HTTP, and FTP file services and can be configured to support anywhere from under a TB to over 2PB of file storage. Currently FileStore can support up to 200M files per file system, up to 100K file systems, and over 2PB of file storage.

FileStore nodes work in an Active-Active configuration. This means any node can fail and the other, active nodes will take over providing the failed node’s file services. Theoretically this means that in a 16 node system, 15 nodes could fail and the lone remaining node could continue to service file requests (of course performance would suffer considerably).

As part of cluser file system, FileStore support quick failover of active nodes. This can be accomplished in under 20 seconds. In addition, FileStore supports asynchronous replication to other FileStore clusters to support DR and BC in the event of a data center outage.

One of the things that FileStore brings to the table is that as it’s running standard Linux O/S services. This means other Symantec functionality can also be hosted on FileStore nodes. The first Symantec service to be co-hosted with FileStore functionality is NetBackup Advanced Client services. Such a service can have the FileStore node act as a media server for it’s own backup cutting network traffic required to do a backup considerably.

FileStore also supports storage tiering whereby files can be demoted and promoted between storage tiers in the multi-volume file system. Also, Symantec EndPoint Protection can be hosted on a FileStore node provided anti-virus protection completely onboard. Other Symantec capabilities will soon follow to add to the capabilities already available.

FileStore’s NFS performance

Regarding performance, Symantec has submitted a 12 node FileStore system for SPECsfs2008 NFS performance benchmark. I looked today to see if it was published yet and it’s not available but they claim to currently be the top performer for SPECsfs2008 NFS operations. I asked about CIFS and they said they had yet to submit one. Also they didn’t mention what the backend storage looked like for the benchmark, but one can assume it had lots of drives (look to the SPECsfs2008 report whenever it’s published to find out).

In their presentation they showed a chart depicting FileStore performance scaleability. According to this chart, at 16 nodes, the actual NFS Ops performance was 93% of theoretical NFS Ops performance. In my view, scaleability is great but often as you approach some marginal utility as the number of nodes increases, the net performance improvement decreases. The fact that they were able to hit 93% with 16 nodes of what a linear extrapolation of NFS ops performance was from 2 to 8 nodes is pretty impressive. (I asked to show the chart but hadn’t heard back by post time

Pricing and market space

At the lowend, FileStore is meant to compete with Windows Storage Server and would seem to provide better performance and availability versus Windows. At the high end, I am not sure but the competition would be with HP/PolyServe and standalone NAS heads from EMC and NetApp/IBM and others. List pricing is about US$7K/node and that top performing SPECsfs2008 12-node system would set you back about $84K for the software alone (please note that list pricing <> street pricing). You would need to add node hardware and the storage hardware to provide a true apples-to-apples pricing comparison with other NAS storage.

As far as current customers they range from large from the high end (>1PB) E-retailers to SAAS providers (Symantec SAAS offering), and at the low end (<10TB) universities and hospitals. FileStore with it’s inherent scaleability and ability to host storage applications from Symantec on the storage nodes can offer a viable solution to many hard file system problems.

We have discussed scale-out and cluster file systems (SO/CFS) in a prior post (Why SO/CFS, Why Now) so I won’t elaborate on why they are so popular today. But, suffice it to say Cloud and SAAS will need SO/CFS to be viable solutions and everybody is responding to supply that market as it emerges.

Full disclosure: I currently have no active or pending contracts with Symantec.